MATH-4800 Numerical Computing

Exam 1 Solutions

Thursday, June 29, 2023

Summer 2023 Schwendeman/Traldi

Name (print clearly in the box):

RIN (print clearly in the box):

$\underline{\mathbf{Instructions}}:$

- 1. Please answer all 5 problems with sufficient supporting work.
- 2. No electronic gizmos (laptops, calculators, cell phones, etc.) permitted.
- 3. No books or notes permitted, but one crib sheet is allowed.
- 4. Write out and sign the **Honor Pledge** below.

Honor 1	Pledge	I have	neither	given	nor	received	anv	illegal	aid	on	this	exam
1101101 1	i ieuge.	1 mave	menuer	given	nor	received	any	megai	aiu	on	01115	слаш.

Problem (pts)	Score				
1 (12pts)					
2 (12pts)					
3 (12pts)					
4 (12pts)					
5 (12pts)					
Total (60pts)					

1. [12pts] (a) Let $S(x) = \sqrt{6-2x}$. An approximation of S(x) is given by

$$\tilde{S}(x) = \frac{5}{2} - \frac{x}{2}$$

Compute (i) the absolute forward error in the approximation when x = 5/2 and (ii) the relative backward error in the approximation when x = 3/2.

Solution

The absolute forward error is

$$|\tilde{S}(5/2) - S(5/2)| = |5/4 - 1| = 1/4$$

The relative backward error is $\,|\tilde{x}-x|/|x|\,,$ where $\,S(\tilde{x})=\tilde{S}(x)\,.$ Have

$$\tilde{S}(3/2) = \frac{7}{4} = S(\tilde{x}) = \sqrt{6 - 2\tilde{x}} \qquad \Rightarrow \qquad \tilde{x} = 47/32$$

Thus,

$$\frac{|\tilde{x} - x|}{|x|} = \frac{|47/32 - 3/2|}{|3/2|} = \frac{1}{48}$$

1. (b) Let $Q(x, y) = x + \sqrt{x^2 + y^2}$. The function Q is computed using finite precision arithmetic for the following (x, y) pairs: (i) $(10^{-5}, 10^5)$ and (ii) $(-10^5, 10^{-5})$. For which of the two pairs, if any or both, does the calculation of Q lead to a large loss of significant digits (i.e. more than 2 or 3 significant digits say)? Explain.

Solution

For the first pair, we have $x = 10^{-5}$ and $y = 10^5$. Since $x \ll y$, we have $\sqrt{x^2 + y^2} \approx |y| = 10^5$ with no loss in significant figures. Thus,

$$Q \approx x + |y| \approx |y| = 10^5$$

with no loss of significant figures.

For the second pair, we have $x = -10^5$ and $y = 10^{-5}$ and now $|x| \gg y$. Thus, $\sqrt{x^2 + y^2} \approx |x| = 10^5$ with no loss in significant figures. However,

$$Q \approx x + |x| \approx 0$$

with loss of significant figures with nearly equal numbers are subtracted.

2. [12pts] (a) Let

$$f(x) = \frac{x}{x+1}$$

and suppose P(x) is the second-degree (quadratic) Taylor polynomial approximation of f(x) about the point $x_0 = 1$. Use the remainder term to estimate |P(1.1) - f(1.1)|.

Solution

Use

$$f'(x) = \frac{1}{(x+1)^2}, \qquad f''(x) = -\frac{2}{(x+1)^3}, \qquad f'''(x) = \frac{6}{(x+1)^4}$$

and

$$f(1) = \frac{1}{2}, \qquad f'(1) = \frac{1}{4}, \qquad f''(1) = -\frac{1}{4}.$$

to get

$$P(x) = \frac{1}{2} + \frac{1}{4}(x-1) - \frac{1}{8}(x-1)^2$$

The remainder term is

$$R(x) = \frac{f'''(c)}{3!}(x-1)^3 = \frac{1}{(c+1)^4}(x-1)^3$$

where c is between x and 1. For x = 1.1, use c = 1 to maximize the remainder. Thus,

$$|P(1.1) - f(1.1)| \le \frac{1}{16} 10^{-3}$$

2. (b) Let $f(x) = x^3 - x^2 - 3x + 1$. A root of f is bracketed on the interval $x \in [0, 1]$. Use **two** steps of the method of false position to determine an approximation for the root.

Solution

Note that f(0) = 1 and f(1) = -2. The line $L_1(x)$ through the points (x, y) = (0, 1) and (1, -2) is

$$L_1(x) = 1 + \frac{-2 - 1}{1 - 0}x = 1 - 3x$$

Set $L_1 = 0$ to give the first approximation $r_1 = 1/3$. Since $f(r_1) = -2/27$, the new bracket is [0, 1/3]. The line $L_2(x)$ through the points (x, y) = (0, 1) and (1/3, -2/27) is

$$L_2(x) = 1 + \frac{-2/27 - 1}{1/3 - 0}x = 1 - \frac{29}{9}x$$

The approximation given by two steps is r_2 , where $L_2(r_2) = 0$, which implies $r_2 = 9/27$.

3. [12pts] (a) Let

$$g(x) = 5 + \frac{2}{3}\sin x, \qquad I = [\pi, 2\pi]$$

Student X claims that the fixed-point iteration, $x_{n+1} = g(x_n)$, converges to the unique fixed point in I for any starting value x_0 in I. Use the Fixed-Point theorem to support this claim or state why the claim may not be true.

Solution

First show that g maps I into itself. Check endpoints

$$g(\pi) = g(2\pi) = 5 \in I$$

Also, check for local extrema

$$g'(x) = \frac{2}{3}\cos x = 0 \qquad \Rightarrow \qquad x = \frac{3\pi}{2} \in I$$

and

$$g(3\pi/2) = 5 - \frac{2}{3} \in I$$

Thus $g \in I$ whenever $x \in I$. Second, note that $|g'| \le 2/3$ for all x including $x \in I$. Thus, according to the Fixed-Point Theorem, the iteration converges for all $x_0 \in I$. Student X is correct.

3. (b) A smooth function F(x) has a simple root at x = r. Newton's method is used to compute the root using a starting value x_0 chosen close enough to r so that the iteration converges. Of the three plots below, which one best describes the behavior of the error, $E_n = |x_n - r|$, as a function of n. Explain.

Solution

Newton's method converges quadratically so that $E_{n+1} \approx C E_n^2$, where C is a constant. Consider the data...

For Plot A, the data appears to be

 $E_1 = 10^{-1}, \quad E_2 = 10^{-3}, \quad E_3 = 10^{-5}, \quad \dots \quad \Rightarrow \qquad E_{n+1} \approx \frac{1}{100} E_n$, i.e. linear convergence

For Plot B, the data appears to be

$$E_1 = 10^{-1}, \quad E_2 = 10^{-2}, \quad E_3 = 10^{-4}, \quad \dots \quad \Rightarrow \quad E_{n+1} \approx E_n^2$$
, i.e. quadratic convergence

Finally, the data for Plot C appears to be

$$E_1 = 10^{-1}, \quad E_2 = 10^{-3}, \quad E_3 = 10^{-9}, \quad \dots \quad \Rightarrow \qquad E_{n+1} \approx E_n^3$$
, i.e. cubic convergence

The answer is Plot B.

4. [12pts] (a) Let

$$A = \left[\begin{array}{rrrr} 2 & 1 & -1 \\ 6 & 2 & 1 \\ -2 & 1 & -4 \end{array} \right]$$

Use row elimination to find a lower triangular matrix L (with ones on the main diagonal) and an upper triangular matrix U such that LU = A.

Solution

and then

Let

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow M_{1}A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 4 \\ 0 & 2 & -5 \end{bmatrix}$$
$$M_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \Rightarrow M_{2}M_{1}A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & -2 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

So,

4. (b) Consider the following sequence of Matlab commands:

Determine an estimate for the value of delta or explain why there is insufficient information given to provide an accurate estimate.

Solution

Since

$$\frac{\|\mathbf{b} - A\mathbf{x}_c\|}{\|\mathbf{b}\|} = O(\epsilon_{\mathrm{mach}})$$

suggests that the linear solver is backwards stable. Thus,

$$\texttt{delta} = \frac{\|\mathbf{x}_c - \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(A)\epsilon_{\text{mach}}$$

Since the condition number $\kappa(A)$ is not given, there is insufficient information given to provide an accurate estimate.

5. [12pts] Let

$$A = \left[\begin{array}{rrr} \alpha & 2 & 0 \\ 2 & 4 & \beta \\ 0 & \beta & 5 \end{array} \right]$$

where α and β are real constants.

- (a) Determine all values of α such that A is symmetric, positive definite when $\beta = 0$.
- (b) Find the Cholesky factorization of A when $\alpha = 3$ and $\beta = -2$.

Solutions

(a) Note that A is symmetric for all values of α and β . If $\beta = 0$, we have

$$\mathbf{x}^T A \mathbf{x} = \alpha x_1^2 + 4x_1 x_2 + 4x_2^2 + 5x_3^2 = (\alpha - 1)x_1^2 + (x_1 + 2x_2)^2 + 5x_3^2 \ge 0 \quad \text{if } \alpha \ge 1.$$

Also, $\mathbf{x}^T A \mathbf{x} = 0$ implies $x_3 = 0$, $x_1 + 2x_2 = 0$ and $(\alpha - 1)x_1^2 = 0$. If $\alpha > 1$, then $x_1 = 0$ which implies $x_2 = 0$. So, A is symmetric, positive definite if $\alpha > 1$.

$$L = \begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ 0 & \ell_{32} & \ell_{33} \end{bmatrix} \Rightarrow LL^{T} = \begin{bmatrix} \ell_{11}^{2} & \ell_{11}\ell_{21} & 0 \\ \ell_{11}\ell_{21} & \ell_{22}^{2} + \ell_{21}^{2} & \ell_{22}\ell_{32} \\ 0 & \ell_{22}\ell_{32} & \ell_{33}^{2} + \ell_{32}^{2} \end{bmatrix}$$

Set $A = LL^T$ when $\alpha = 3$ and $\beta = -2$ gives

$$\ell_{11} = \sqrt{3}, \qquad \ell_{21} = 2/\sqrt{3}, \qquad \ell_{22} = 2\sqrt{2/3}, \qquad \ell_{32} = -\sqrt{3/2}, \qquad \ell_{33} = \sqrt{7/2}$$