Assignment 4, due before class, Monday June 26, 2023.
Haowen He heh4@rpi.edu

1. Text exercises $2(a), 2(b)$, and 4 on page 97 . Hint: it may be helpful to recall the following formulas valid for $2 \times 2$ matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

$$
\text { (aa) } \begin{aligned}
& A=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right) \quad\|A\|_{\infty}=\max \{3,7\}=7 \\
& A^{-1}=\left(\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right) \quad\left\|A^{-1}\right\|_{\infty}=\max \{3,2\}=3 \\
& \Rightarrow K_{\infty}(A)=7 \times 3=21,
\end{aligned}
$$

$$
\text { (ab) } \quad \begin{aligned}
A & =\left(\begin{array}{cc}
1 & 2.01 \\
3 & 6
\end{array}\right) \quad\|A\|_{\infty}=\max \{3.01, \rho\}=\rho \\
A^{-1} & =\left(\begin{array}{cc}
-200 & 67 \\
100 & -100 / 3
\end{array}\right)\left\|A^{-1}\right\|_{\infty}=\max \{267,400 / 3\}=267 \\
& \Rightarrow K_{\infty}(A)=\rho \times 267=2403
\end{aligned}
$$

(Ha) $\left(\begin{array}{cc|c}1 & 2 & 1 \\ 2 & 4.01 & 2\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left(\begin{array}{cc|c}1 & 2 & 1 \\ 0 & 0.01 & 0\end{array}\right) \Rightarrow\left\{\begin{array}{l}0.01 x_{2}=0 \Rightarrow x_{2}=0 \\ x_{1}+2 x_{2}=1 \Rightarrow x_{1}=1\end{array}\right.$
Actual solution: $x=\binom{1}{0}$

$$
\Rightarrow x_{c}=(-1,1)
$$

Forward error: $\left\|x-x_{c}\right\|_{\infty}=\max \{2,1\}=2$

Backward error: $\left\|b-A x_{c}\right\|_{\infty}=\max \{0,0.01\}=0.01$

$$
\begin{aligned}
\text { Error magnification factor } & =\frac{\text { reh, forward err }}{\text { reh, backward err }} \\
& =\frac{2 / 1}{0.01 / 2} \\
& =400
\end{aligned}
$$

(4b) $\Rightarrow x_{c}=(3,-1)$
Forward error: $\left\|x-x_{c}\right\|_{\infty}=\max \{1-\alpha \mid, 1\}=2$

Backward error: $\left\|b-A x_{c}\right\|_{\infty}=\max \{0,0.01\}=0.01$

$$
\begin{aligned}
\text { Error magnification factor } & =\frac{\text { reh, forward err }}{\text { reh, backward err }} \\
& =\frac{2 / 1}{0.01 / 2} \\
& =400
\end{aligned}
$$

$$
(4 c) \Rightarrow x_{c}=(2,-1 / 2)
$$

Forward error: $\left\|x-x_{c}\right\|_{\infty}=\max \{1-1 \mid, 1 / 2\}=1$

Backward error: $\left\|b-A x_{c}\right\|_{\infty}=\max \{0,0.005\}=0.005$

$$
\begin{aligned}
\text { Error magnification factor } & =\frac{\text { reh, forward err }}{\text { reh, backward err }} \\
& =\frac{1 / 1}{0.005 / 2} \\
& =400
\end{aligned}
$$

2. Computer problem 1 on page 98. For this problem, use $A_{i j}=3 /(i+2 j-1)$ instead of the formula for $A_{i j}$ given in the text. Be sure to include a brief comment on the result of the comparison. Is the result expected and why.
```
    function [] = p2(n)
A=zeros(n);
x=ones(n,1);
for i=1:n
    for j=1:n
        A(i,j)=3/(i+2*j-1);
        end
end
b=A*x;
xc=A\b;
fe=norm(x-xc, "inf");
rfe=fe/norm(x, "inf");
be=norm(b-A*xc, "inf");
rbe=be/norm(b, "inf");
emf=rfe/rbe;
condnum=cond(A, inf);
disp(["forward error: ", num2str(fe)])
disp(["relative forward error: ", num2str(rfe)])
disp(["backward error: ", num2str(be)])
disp(["relative backward error: ", num2str(rbe)])
disp(["Error Magnification factor: ", num2str(emf)])
disp(["Condition number of A: ", num2str(condnum)])
```

$\mathrm{p} 2(6)$
$\mathrm{p} 2(10)$
$n=6$
"forward error: " "1.8479e-09"
"relative forward error: " "1.8479e-09"
"backward error: " "2.2204e-16"
"relative backward error: " "6.042e-17"
"Error Magnification factor: " "30584566.425"
"Condition number of $A: " \quad " 70342013.954 "$
"forward error: " "0.0028717"
"relative forward error: " "0.0028717"
"backward error: " "4.4409e-16"
$n=10 \quad$ "relative backward error: " "1.0108e-16"
"Error Magnification factor: " "28410438423259.55"
"Condition number of A: " "131321934554336.8"
3. Text exercises $2(a)$, and $4(b)$ on page 106. These problems are to be done using hand calculations.

$$
\text { (aa) } \begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right) \Rightarrow \begin{array}{l}
\text { Row } 2 \text { has the } \\
\text { largest pivot value }
\end{array} \Rightarrow P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& P A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 1 & -1 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}+\frac{1}{2} R_{1}}\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 3 / 2 & -3 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right) \xrightarrow{R_{3}-\frac{1}{2} R_{1}} \rightarrow R_{3}-\frac{1}{3} R_{2} \\
&\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 3 / 2 & -3 / 2 \\
0 & 0 & 1
\end{array}\right)=U \\
&\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -1 \\
-1 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
1 / 2 & 1 / 3 & 1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
1 / 2 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 3 / 2 & -3 / 2 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(4b) $A=\left(\begin{array}{ccc}-1 & 0 & 1 \\ \alpha & 1 & 1 \\ -1 & \alpha & 0\end{array}\right) \Rightarrow \begin{aligned} & \text { Row } \alpha \text { has the } \\ & \text { largest pivot value }\end{aligned} \Rightarrow P=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
P A= & \left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right) \xrightarrow[R_{3} \rightarrow R_{3}+\frac{1}{2} R_{1}]{R_{2} \rightarrow R_{2}+\frac{1}{2} R_{1}}\left(\begin{array}{ccc}
2 & 1 & 1 \\
0 & 5 / 2 & 1 / 2 \\
0 & 1 / 2 & 3 / 2
\end{array}\right) \xrightarrow{R_{3} \rightarrow R_{3}-\frac{1}{5} R_{2}} \\
& \left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 5 / 2 & 1 / 2 \\
0 & 0 & 1 / 5
\end{array}\right)=U \Rightarrow \alpha=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
-1 / 2 & 1 / 5 & 1
\end{array}\right)
\end{aligned}
$$

back substitution: $\quad \mathrm{Pb}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{c}-2 \\ 17 \\ 3\end{array}\right)=\left(\begin{array}{c}17 \\ 3 \\ -2\end{array}\right)$

$$
\begin{gathered}
\alpha y=\rho b \Rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & 17 \\
-1 / 2 & 1 & 0 & 3 \\
-1 / 2 & 1 / 5 & 1 & -2
\end{array}\right) \Rightarrow \begin{array}{l}
\left\{\begin{array}{l}
y_{1}=17 \\
y_{2}=23 / 2=11.5 \\
y_{3}=21 / 5=4.2
\end{array}\right. \\
U x=y \Rightarrow\left(\begin{array}{ccc|c}
2 & 1 & -1 & 17 \\
0 & 5 / 2 & 1 / 2 & 11.5 \\
0 & 0 & 1 / 5 & 4.2
\end{array}\right) \Rightarrow \begin{array}{l}
x_{3}=3 \\
x_{2}=4 \\
x_{1}=5
\end{array} \\
x=\left(\begin{array}{l}
5 \\
4 \\
3
\end{array}\right) .
\end{array}
\end{gathered}
$$

4. Write a Matlab code (following the algorithm discussed in class) that takes an $n \times n$ matrix $A$ as input and returns $P, L$ and $U$ such that $P A=L U$. Your code should use row elimination with partial pivoting. Test your code using the matrix in text exercise $2(a)$ above and on a matrix generated using $A=r a n d(6,6)$. In both cases, compute norm $(P * A-L * U)$ to verify that your code is working correctly.
```
function [P,L,U] = myPLU(A)
[m,n]=size(A);
if m~=n
        error("Matrix A is not square!")
end
P=eye(n);
L=eye(n);
U=A;
for k=1:n-1
    [pv,p] = max(abs(U(k:n, k)));
    p=p+k-1;
    if p~=k
            P([p,k],:)=P([k,p],:);
            U([p,k],:)=U([k,p],:);
            if k>1
                L([p,k],1:k-1)=L([k,p],1:k-1);
            end
    end
    for i=k+1:n
            m=U(i,k)/U(k,k);
            L(i,k)=m;
            for j=k:n
                U(i,j)=U(i,j)-U(k,j)*m;
            end
        end
end
```

```
% Problem 4 Part (i)
A=[1,1,0;2,1,-1;-1,1,-1];
[P,L,U]=myPLU(A)
fprintf("norm(P*A-L*U) = %g\n", norm(P*A-L*U))
    P=
```

                \(\begin{array}{lll}0 & 1 & 0\end{array}\)
            \(0 \quad 0 \quad 1\)
            100
    $L=$

| 1.0000 | 0 | 0 |
| ---: | ---: | ---: |
| -0.5000 | 1.0000 | 0 |
| 0.5000 | 0.3333 | 1.0000 |

$U=$
$2.0000 \quad 1.0000-1.0000$
$0 \quad 1.5000 \quad-1.5000$
$0 \quad 0 \quad 1.0000$
$\operatorname{norm}(P * A-L * U)=0$
\% Problem 4 Part (iI)
A=rand 6,6 );
$[P, L, U]=\operatorname{myPLU}(A)$
fprintf("norm(P*A-L*U) $=\% \mathrm{~g} \backslash \mathrm{n} ", \operatorname{norm}(P * A-L * U))$

| $U=$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 00 | 0 |  |  | 0.9293 |  | 0.7572 | 0.5308 | 0.0119 | 0.1656 |
| 0 | 0 | 0 | 10 | 0 |  |  |  | 0.3517 |  |  |  |  |
| 0 | 1 | 0 | 00 | 0 |  |  | 0 | 0.6984 | 0.4685 | 0.5793 | 0.3326 | 0.5396 |
| 1 | 0 | 0 | 00 | 0 |  |  | 0.0000 | -0.0000 | -0.1683 | -0.4013 | 0.2847 | 0.1906 |
| 0 | 0 | 0 | 00 | 1 |  |  | 0 | 0 | 0 | -0.7570 | 0.4915 | -0.0185 |
| 0 | 0 | 0 | 01 | 0 |  |  | 0 | 0 | 0 | 0 | 0.3292 | 0.3368 |
|  |  |  |  |  |  |  | 0 | 0 | 0 | 0 | 0 | -0.4831 |
| $L=$ |  |  |  |  |  |  | $(P * A-L$ | $=1.745$ | e-16 |  |  |  |
| 1.0000 |  | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |
| 0.3766 |  | 1.0000 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |
| 0.2621 |  | 0.5457 | 1.0000 | 0 | 0 | 0 |  |  |  |  |  |  |
| 0.8763 |  | 0.4409 | -0.2799 | 1.0000 | 0 | 0 |  |  |  |  |  |  |
| 0.2702 |  | 0.6511 | -0.3456 | 0.6993 | 1.0000 | 0 |  |  |  |  |  |  |
| 0.2116 |  | 0.7315 | 0.7278 | -0.9116 | 0.4772 |  |  |  |  |  |  |  |

5. Consider the tridiagonal matrices

$$
A=\left[\begin{array}{rrr}
2 & 3 & 0 \\
-1 & -5 / 2 & 2 \\
0 & -1 / 4 & 3 / 2
\end{array}\right], \quad B=\left[\begin{array}{rrr}
4 & -2 & 0 \\
-2 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Use direct factorization (as discussed in class) to find (by hand calculations) a lower triangular matrix $L$ (with ones on the main diagonal) and an upper triangular matrix $U$ such that $A=L U$.
(b) Show that the symmetric matrix $B$ is positive definite by writing $\mathbf{x}^{T} B \mathbf{x}$ as a sum of squares involving the three components, $\left(x_{1}, x_{2}, x_{3}\right)$, of $\mathbf{x}$. Be sure to show that $\mathbf{x}^{T} B \mathbf{x}=0$ implies that $x_{1}=x_{2}=x_{3}=0$.
(a)

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
2 & 3 & 0 \\
-1 & -5 / 2 & \alpha \\
0 & -1 / 4 & 3 / 2
\end{array}\right)=\left(\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
h_{21} u_{11} & u_{22}+h_{21} u_{12} & u_{23}+h_{21} u_{13} \\
h_{31} u_{11} & h_{31} u_{12}+h_{32} u_{22} & h_{31} u_{13}+h_{32} u_{23}+u_{33}
\end{array}\right) \\
& \int h_{21} u_{11}=-1 \Rightarrow h_{21}=-1 / 2 \\
& u_{11}=\alpha \Rightarrow \mid h_{31} u_{11}=0 \Rightarrow h_{31}=0 \\
& \int u_{22}+h_{21} u_{12}=-\frac{5}{2} \Rightarrow u_{22}=-1 \\
& u_{12}=3 \Rightarrow 1 h_{31} u_{12}+h_{32} u_{22}=-\frac{1}{4} \Rightarrow h_{32}=\frac{1}{4} \\
& \int u_{23}+h_{21} u_{13}=2 \Rightarrow u_{23}=2 \\
& u_{13}=0 \Rightarrow\left\{\begin{array}{l}
31 u_{13}+h_{32} u_{23}+u_{33}=\frac{3}{2} \Rightarrow u_{33}=1
\end{array}\right. \\
& \alpha=\left(\begin{array}{ccc}
1 & 0 & 0 \\
h_{21} & 1 & 0 \\
h_{31} & h_{32} & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & 1 / 4 & 1
\end{array}\right) \\
& U=\left(\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 3 & 0 \\
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
x^{\top} B x & =4 x_{1}^{\alpha}-4 x_{1} x_{2}+3 x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2} \\
& =\left(4 x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{\alpha}\right)+x_{2}^{2}+\left(x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}\right) \\
& =\left(2 x_{1}-x_{2}\right)^{2}+x_{2}^{2}+\left(x_{2}+x_{3}\right)^{2} \geqslant 0 .
\end{aligned}
$$

Now as $x^{\top} B x$ is the sum of squares, it follows that $x^{\top} B x=0$ if and only if $2 x_{1}-x_{2}=x_{2}=x_{2}+x_{3}=0$, which implies that all three components of $x$ are zero.
6. Let

$$
\mathbf{G}(\mathbf{x})=\left[\begin{array}{c}
\frac{1}{4}\left(x_{1}-x_{2}-1\right) \\
\alpha\left(x_{1}^{2}-1\right)+x_{2}
\end{array}\right], \quad \mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
\frac{1}{2} x_{1}-x_{2}-1 \\
x_{1}^{2}-x_{2}^{2}-1
\end{array}\right]
$$

(a) Show that $\mathbf{G}(\mathbf{x})$ has a fixed point $\mathbf{x}^{\star}=(-1,2)$ for any value of the constant $\alpha$. Analyze the eigenvalues of the Jacobian matrix $J=\partial \mathbf{G} / \partial \mathbf{x}$ to determine whether the fixed-point iteration $\mathbf{x}_{k+1}=\mathbf{G}\left(\mathbf{x}_{k}\right)$ is locally convergent when $(i) \alpha=-1 / 4$ or when (ii) $\alpha=1 / 2$.
(b) Let $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ be the two component functions of $\mathbf{F}(\mathbf{x})$. Plot the graphs of $f_{1}=0$ and $f_{2}=0$ in the $x_{1}-x_{2}$ plane to estimate the roots $\mathbf{x}=\mathbf{r}$ of $\mathbf{F}$. Write a Matlab code to determine all roots of $\mathbf{F}$ using Newton's method. Output $\mathbf{x}_{k}$, the $k^{\text {th }}$ iterate in Newton's method, and $\left\|\mathbf{x}_{k}-\mathbf{x}_{k-1}\right\|$ to verify quadratic convergence.
(a)

$$
\begin{aligned}
& G\left(x^{*}\right)=\binom{\frac{1}{4}(-1-\alpha-1)}{\alpha(1-1)+\alpha}=\binom{-1}{\alpha}=x^{*}, \text { thus } x^{*} \text { is a fixed point of } G(x) \\
& \text { regardless of the value of constant } \alpha \\
& J=\left(\begin{array}{cc}
\frac{\partial G_{1}}{\partial x_{1}} & \frac{\partial G_{1}}{\partial x_{2}} \\
\frac{\partial G_{2}}{\partial x_{1}} & \frac{\partial G_{2}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 / 4 & -1 / 4 \\
2 \alpha x_{1} & 1
\end{array}\right) \Rightarrow J_{(-1, \alpha)=\left(\begin{array}{cc}
1 / 4 & -1 / 4 \\
-\alpha \alpha & 1
\end{array}\right)}^{\text {At } \alpha=-\frac{1}{4}, J_{1}=\left(\begin{array}{cc}
1 / 4 & -1 / 4 \\
1 / 2 & 1
\end{array}\right)} \begin{array}{r}
\operatorname{det}\left(J_{1}-\lambda I\right)=\left|\begin{array}{cc}
\frac{1}{4}-\lambda & -1 / 4 \\
1 / 2 & 1-\lambda
\end{array}\right|=\lambda^{2}-\frac{5}{4} \lambda+\frac{1}{4}+\frac{1}{8}=\lambda^{2}-\frac{5}{4} \lambda+\frac{3}{8} \\
\text { set } \lambda^{2}-\frac{5}{4} \lambda+\frac{3}{8}=0 \Rightarrow\left(\lambda-\frac{1}{2}\right)\left(\lambda-\frac{3}{4}\right)=0 \\
\lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{3}{4} \\
\max \left\{\left|\lambda_{i}\right|\right\}<1
\end{array}
\end{aligned}
$$

Therefore, when $\alpha=-1 / 4$, the fixed-point iteration is locally convergent.

At $\alpha=\frac{1}{2}, \quad J_{2}=\left(\begin{array}{cc}1 / 4 & -1 / 4 \\ -1 & 1\end{array}\right)$

$$
\operatorname{det}\left(J_{2}-\lambda I\right)=\left|\begin{array}{cc}
\frac{1}{4}-\lambda & -1 / 4 \\
1 / 2 & 1-\lambda
\end{array}\right|=\lambda^{2}-\frac{5}{4} \lambda+\frac{1}{4}-\frac{1}{4}=\lambda^{2}-\frac{5}{4} \lambda
$$

set $\lambda^{2}-\frac{5}{4} \lambda=0 \Rightarrow \lambda\left(\lambda-\frac{5}{4}\right)=0$

$$
\begin{aligned}
& \lambda_{1}=0, \lambda_{2}=\frac{5}{4} \\
& \max \left\{\left|\lambda_{i}\right|\right\}>1
\end{aligned}
$$

Therefore, when $\alpha=\frac{1}{\alpha}$, the fixed-point iteration is NOT locally convergent.


function $x=m y N e w t o n N L(f, f p, x 0)$
tol=1e-12;
nMax=10;
xpre=[0;0];
$\mathrm{x}=\mathrm{x} 0$;
$\mathrm{n}=0$;
while $\mathrm{n}<\mathrm{nMax} \& \&$ abs(norm(x-xpre)) $>$ tol xpre=x;
$\mathrm{s}=\mathrm{fp}(\mathrm{x}) \backslash-\mathrm{f}(\mathrm{x})$;
$\mathrm{x}=\mathrm{s}+\mathrm{x}$;
$\mathrm{n}=\mathrm{n}+1$;
fprintf("iteration \%d $x=[\% 3.5 f ; \% 3.5 f ;] \operatorname{err}=\% 8 \mathrm{e} \backslash \mathrm{n} ", \mathrm{n}, \mathrm{x}(1,:), \mathrm{x}(2,:)$, norm( $\mathrm{x}-$ xpre))
end
end

```
f=@(x)[1/2*x(1)-x(2)-1; x(1)^2-x(2)^2-1];
fp=@(x)[1/2 -1; 2*x(1) -2*x(2)];
x0=[1; -0.5];
myNewtonNL(f,fp,x0)
x0=[-2.5; -2];
myNewtonNL(f,fp,x0)
```

iteration $1 \mathrm{x}=[1.10000$; -0.45000; ] err=1.118034e-01
iteration $2 x=[1.09717 ;-0.45142 ;]$ err=3.164247e-03
iteration $3 x=[1.09717 ;-0.45142 ;]$ err=2.538619e-06
iteration 4 x=[1.09717; -0.45142; ] err=1.633781e-12
iteration 5 x=[1.09717; -0.45142;] err=2.482534e-16
ans $=$
1.0972
-0.4514
iteration $1 \mathrm{x}=[-2.41667$; -2.20833; ] err=2.243819e-01
iteration $2 x=[-2.43056 ;-2.21528 ;]$ err=1.552825e-02
iteration $3 x=[-2.43050 ;-2.21525 ;]$ err=6.113484e-05
iteration $4 x=[-2.43050 ;-2.21525 ;]$ err=9.476218e-10
iteration $5 \mathrm{x}=[-2.43050 ;-2.21525 ;]$ err=4.440892e-16

```
ans =
    -2.4305
    -2.2153
```

