
MATH-4800 NUMERICAL COMPUTING Summer 2023

Assignment 4, due before class, Monday June 26, 2023.

Haowen He heh4@rpi.edu

1. Text exercises 2(a), 2(b), and 4 on page 97. Hint: it may be helpful to recall the following
formulas valid for 2⇥ 2 matrices
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Actual solution: X
0

xc ) - 1,17

forward error:x xx Max32, 132

Backward error:b Axc o max [0,0.013 0.01

reh, forward err
Error magnification factor reh, backward err

21

0.012

400

24/3 xc (3, - )

forward error:x xx Max? 2,132

Backward error:b Axc o max [0,0.013 0.01

reh, forward err
Error magnification factor reh, backward err

21

0.012

400



(42) xc 12, - 2

Forward error:x xx Max3, 23

Backward error:b Axc x max[0,0.00530.005

reh, forward err
Error magnification factor reh, backward err

11

0.0052

400



2. Computer problem 1 on page 98. For this problem, use Aij = 3/(i+2j�1) instead of the formula
for Aij given in the text. Be sure to include a brief comment on the result of the comparison. Is
the result expected and why.

n6

n 10



3. Text exercises 2(a), and 4(b) on page 106. These problems are to be done using hand calculations.
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4. Write a Matlab code (following the algorithm discussed in class) that takes an n ⇥ n matrix
A as input and returns P , L and U such that PA = LU . Your code should use row elimination
with partial pivoting. Test your code using the matrix in text exercise 2(a) above and on a matrix
generated using A=rand(6,6). In both cases, compute norm(P*A-L*U) to verify that your code is
working correctly.
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5. Consider the tridiagonal matrices
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(a) Use direct factorization (as discussed in class) to find (by hand calculations) a lower triangular
matrix L (with ones on the main diagonal) and an upper triangular matrix U such that
A = LU .

(b) Show that the symmetric matrix B is positive definite by writing xTBx as a sum of squares
involving the three components, (x1, x2, x3) , of x. Be sure to show that xTBx = 0 implies
that x1 = x2 = x3 = 0.
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6. Let

G(x) =

"
1
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#
, F(x) =
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#
.

(a) Show that G(x) has a fixed point x? = (�1, 2) for any value of the constant ↵. Analyze the
eigenvalues of the Jacobian matrix J = @G/@x to determine whether the fixed-point iteration
xk+1 = G(xk) is locally convergent when (i)↵ = �1/4 or when (ii) ↵ = 1/2.

(b) Let f1(x1, x2) and f2(x1, x2) be the two component functions of F(x) . Plot the graphs of
f1 = 0 and f2 = 0 in the x1�x2 plane to estimate the roots x = r of F. Write a Matlab code
to determine all roots of F using Newton’s method. Output xk , the kth iterate in Newton’s
method, and ||xk � xk�1|| to verify quadratic convergence.
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Therefore, when a -

4, the fixed-point iteration is locally convergent.



Ata, Ja
'4 4

I I

det 152 AIS I - x - Y4 4Ix 4. I** Ex
%2 1 - x

set xx 0 x(x - ) 0

4. 0, N2

max(x=)

Therefore, when a a, the fixed-point iteration is NOTlocally convergent.




