Assignment 3, due before class, Thursday June 15, 2023.
Haowen He heh4@rpi.edu

1. Let

$$
A=\left[\begin{array}{rrr}
1 & -2 & -1 \\
\alpha & 3 & 1 \\
-1 & \alpha & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
\beta \\
-4 \\
2
\end{array}\right]
$$

and let \mathbf{x} be the solution of $A \mathbf{x}=\mathbf{b}$, if it exists. Determine conditions on the constants α and β such that (a) a solution or solutions exist and (b) a unique solution exists.
(a)

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot(3-\alpha)-(-\alpha)(\alpha+1)-1 \cdot\left(\alpha^{2}+3\right) \\
& =3-\alpha+2 \alpha+\alpha-\alpha^{\alpha}-3 \\
& =-\alpha^{2}+\alpha+2
\end{aligned}
$$

$$
\text { when } \begin{aligned}
\operatorname{det}(A) \neq 0,-\alpha^{\alpha}+\alpha+\alpha & \neq 0 \\
(\alpha-\alpha)(\alpha+1) & \neq 0 \\
\alpha & \neq-1, \alpha
\end{aligned}
$$

matrix A is non-singular, and thus, a solution exists.

$$
\begin{aligned}
& \text { when } \alpha=-1, \quad\left(\begin{array}{ccc:c}
1 & -\alpha & -1 & \beta \\
-1 & 3 & 1 & -4 \\
-1 & -1 & 1 & \alpha
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{1}+R_{2}} \begin{array}{l}
R_{3} \rightarrow R_{1}+R_{3} \\
\left(\begin{array}{ccc:c}
1 & -\alpha & -1 & \beta \\
0 & 1 & 0 & \beta-4 \\
0 & -3 & 0 & \beta+2
\end{array}\right) \xrightarrow{R_{3} \rightarrow 3 R_{2}+R_{3}}\left(\begin{array}{ccc:c}
1 & -2 & -1 & \beta \\
0 & 1 & 0 & \beta-4 \\
0 & 0 & 0 & 4 \beta-10
\end{array}\right)
\end{array} .
\end{aligned}
$$

in order for solutions to exist, $4 \beta-10=0 \Rightarrow \beta=5 / \alpha$.
when $\alpha=\alpha, \quad\left(\begin{array}{ccc:c}1 & -\alpha & -1 & \beta \\ 2 & 3 & 1 & -4 \\ -1 & 2 & 1 & 2\end{array}\right) \xrightarrow[R_{3} \rightarrow R_{1}+R_{3}]{R_{2} \rightarrow R_{2}-2 R_{1}}$
$\left(\begin{array}{ccc:c}1 & -\alpha & -1 & \beta \\ 0 & 7 & 3 & -4-\beta \\ 0 & 0 & 0 & \beta+2\end{array}\right)$ in order for solutions to exist,

$$
\beta+\alpha=0 \Rightarrow \beta=-\alpha .
$$

Therefore, when $\alpha \neq-1, \alpha$ or $\alpha=-1, \beta=5 / 2$, or $\alpha=\alpha, \beta=-\alpha$, a solution or solutions exist.
(b) When $\alpha \neq-1, \alpha$, determinant of A is non-zero. It follows that matrix A is non-singular, which implies that A is invertible, and thus $A^{-1} b$ is a unique solution of $A x=b$, regardless of the value of β we choose,
2. (a) Consider the two augmented matrices of the form $[A \mid \mathbf{b}]$ in text exercise 4 on page 81 . For each matrix, use row operations to reduce it to the upper triangular form $[U \mid \mathbf{c}]$ and then find the solution of $U \mathbf{x}=\mathbf{c}$ using backwards substitution.
(b) Text exercise 6 and 7 on page 82 .

Solution $x=\left(\begin{array}{c}1 \\ 1 / 2 \\ -1\end{array}\right)$,

$$
\begin{aligned}
& \left(\begin{array}{lll:l}
2 & 1 & -1 & 2 \\
6 & 2 & -2 & 8 \\
4 & 6 & -3 & 5
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}-3 R_{1}}\left(\begin{array}{ccc:c}
2 & 1 & -1 & 2 \\
R_{3} \rightarrow R_{3}-2 R_{1} \\
0 & -1 & 1 & 2 \\
0 & 4 & -1 & 1
\end{array}\right) \\
& \xrightarrow{R_{3} \rightarrow R_{3}+4 R_{1}}\left(\begin{array}{llllll}
2 & 1 & -1 & 2 \\
0 & -1 & 1 & 2 \\
0 & 0 & 3 & 9
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
3 x_{3} & =9 \\
-x_{2}+x_{3} & =2 \\
2 x_{1}+x_{2}-x_{3} & =2
\end{array}\right\} \begin{aligned}
x_{3} & =3 \\
-x_{2} & =2-3=-1 \Rightarrow x_{2}=1 \\
2 x_{1} & =2-1+3=4 \Rightarrow x_{1}=2
\end{aligned}
$$

Solution $x=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$
(b) Given that the computer takes 0.005 seconds to perform back-substitution which has complexity of $\theta\left(n^{\alpha}\right)$.

Now as a Such Gaussian elimination takes approximately $\frac{2}{3} n^{3}$ operations, with $n=5000$, it follows that

$$
\begin{aligned}
& n^{2} \cdot \frac{2}{3} n \\
= & 0.005 \cdot \frac{2 \cdot 5000}{3} \\
\approx & 17 \mathrm{~s}
\end{aligned}
$$

Now given the computer takes 0.002 seconds to perform back-substitution on a 4000 by 4000 matrix, it follows that it can perform

$$
\frac{4000^{2}}{0.002}=8 \times 10^{9} \text { operations } / \text { second }
$$

Solving a general system of 9000 equations with 9000 unknowns will take approximately $9000^{2}+\frac{2}{3} 9000^{3}=4.86081 \times 10^{11}$ operations, and the computer with need approximately $\frac{4.86081 \times 10^{11}}{8 \times 10^{9}} \approx 61 \mathrm{~s}$ to compute,
3. Let \hat{A} be an $n \times(n+2)$ matrix and consider the following steps in a Matlab code:

```
for kb=1:2
    x(n,kb)=Ahat (n,n+kb)/Ahat (n,n);
    for i=n-1:-1:1
        sum=Ahat(i,n+kb);
        for j=i+1:n
            sum=sum-Ahat(i,j)*x(j,kb);
        end
        x(i,kb)=sum/Ahat(i,i);
    end
end
```

Determine the number of flops used to compute the elements of \mathbf{x} for a given positive interger n. (Find an expression for the number of flops exactly, without approximation for large n.)

$$
\text { Divisions } \begin{aligned}
\mathcal{g}_{d} & =\sum_{k b=1}^{2} 1+\sum_{k b=1}^{2} \sum_{i=1}^{n-1} 1 \\
& =2+2(n-1) \\
& =2 n
\end{aligned}
$$

Multiplications

$$
\begin{aligned}
\mathscr{G}_{m} & =\sum_{k b=1}^{\alpha} 1 \sum_{j=i+1}^{n}=\sum_{k b=1}^{\alpha} 1 \sum_{i=1}^{n-1}(n-(i+1)+1) \\
& =2 \sum_{i=1}^{n-1}(n-i)=2\left(\sum_{i=1}^{n-1} n-\sum_{i=1}^{n-1} i\right) \\
& =2\left(n \sum_{i=1}^{n-1} 1-\sum_{i=1}^{n-1} i\right) \\
& =2 n(n-1)-\alpha \cdot \frac{n(n-1)}{2} \\
& =2 n^{2}-2 n-n^{\alpha}+\eta \\
& =n^{2}-\eta
\end{aligned}
$$

Additions $\quad g_{a}=\eta^{2}-\eta$ same as multiplication
one Sloating-point subtraction from each multiplication

$$
\text { Total }=2 \eta+\eta^{2}-\eta+n^{2}-\eta=2 n^{2} \quad 8 \text { lops }
$$

4. (a) Write a Matlab code to compute the $L U$-decomposition of a given $n \times n$ matrix A following the algorithm discussed in class. Your code need not perform row interchanges (pivoting), but should check for very small pivot elements and provide a warning if one is encountered.
(b) Use your code to compute the L and U factors for the following matrices:
(i) $A=\left[\begin{array}{llllllll}6 & 3 & 2 ; & -1 & 4 & 2 ; & 1 & 3\end{array}\right]$;
(ii) $\mathrm{A}=\mathrm{hilb}(5)$;

Print out L and U and compute norm (A -L*U) for each case. The latter is Matlab's calculation of the distance (i.e. norm) between A and the product $L U$. What are the expected values for this norm?

```
            function [L,U] = myLU(A)
    [m,n]=size(A);
    if m~=n
    error("Matrix is not square!")
end
L=eye(n);
U=A;
for k=1:n-1
        if abs(U(k,k))<10e-16
            printf("Warning: value less than 1-e-16\n");
        end
        for i=k+1:n
            L(i,k)=U(i,k)/U(k,k);
            for j=k:n
                    U(i,j)=U(i,j)-L(i,k)*U(k,j);
            end
        end
end
% HW 3 Problem 4 part (i)
[L,U] = myLU([6 3 2; -1 4 2; 1 3 -5])
norm([6 3 2; -1 4 2; 1 3 -5]- L*U)
% HW 3 Problem 4 part (ii)
[L,U] = myLU(hilb(5))
norm(hilb(5)- L*U)
                                    Part i̇
```

 \(L=\)
 | 1.0000 | 0 | 0 |
| ---: | ---: | ---: |
| -0.1667 | 1.0000 | 0 |
| 0.1667 | 0.5556 | 1.0000 |

$U=$		
6.0000	3.0000	2.0000
0	4.5000	2.3333
0	0	-6.6296

$U=$

1.0000	0.5000	0.3333	0.2500	0.2000
0	0.0833	0.0833	0.0750	0.0667
0	-0.0000	0.0056	0.0083	0.0095
0	0	0	0.0004	0.0007
0	0	0	0	0.0000

5. (a) An $n \times n$ elimination matrix M has the form

$$
M=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & 0 & & \\
& & 1 & & & \\
& & -m_{k+1, k} & & & \\
& 0 & \vdots & 0 & \ddots & \\
& & -m_{n, k} & & & 1
\end{array}\right] \text { for some integer } k \in[1, n-1]
$$

Find 4×4 elimination matrices M_{1} and M_{2} satisfying

$$
M_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad M_{2}\left[\begin{array}{r}
2 \\
-1 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1 \\
0 \\
0
\end{array}\right]
$$

(b) An $n \times n$ permutation matrix P is a row or column permutation of the $n \times n$ identity matrix. Thus, P has exactly one 1 in every column and row. The following are examples of 3×3 permutation matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find 4×4 permutation matrices P_{1} and P_{2} satisfying

$$
P_{1}\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right], \quad P_{2}\left[\begin{array}{r}
2 \\
-1 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
-3 \\
2
\end{array}\right]
$$

(a)

$$
\begin{array}{ccc}
2-2 \cdot 1= & 3-3 \cdot 1=4-4 \cdot 1=0 \\
\| & \| & \| \\
m_{2,1}=2 & m_{3,1}=3 & m_{4,1}=4
\end{array}
$$

$$
M_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
-4 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{gathered}
4+4 \cdot(-1)=-3-3 \cdot(-1)=0 \\
\begin{array}{c}
11 \\
m_{3,2}=-4 \\
m_{4,2}=3
\end{array} \\
m_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right)
\end{gathered}
$$

By definition given above, elimination matrix M has the form of $\left(\begin{array}{lll}1 & & \\ & 1 & 0 \\ 0 & & 1 \\ & & \\ & & \end{array}\right)$, where the bottom entries should be in the same column.
(b) $\quad P_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) \quad P_{2}=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$

For permutation matrix P, the product $P A$ is a new matrix whose rows consists of the rows of A rearranged in the new order.

