
MATH-4800 NUMERICAL COMPUTING Summer 2023

Assignment 3, due before class, Thursday June 15, 2023.
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and let x be the solution of Ax = b, if it exists. Determine conditions on the constants ↵ and �
such that (a) a solution or solutions exist and (b) a unique solution exists.
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matrix A is non-singular, and thus, a solution exists.
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Therefore, when a -1, 2 or a 1,2, or a 2, B -2,

a solution or solutions exist.

b) When a -1,2, determinant of A is non--ero. It

follows thatmatrix A is non-singular, which implies that

Ais invertible, and thus Ab is a unique solution of

Ax b, regardless of the value of we choose.



2. (a) Consider the two augmented matrices of the form [A|b] in text exercise 4 on page 81. For

each matrix, use row operations to reduce it to the upper triangular form [U |c] and then find

the solution of Ux = c using backwards substitution.

(b) Text exercise 6 and 7 on page 82.
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b) Given that the computer takes 0.005seconds to

perform back-substitution which has complexityof 0,n2.

Iow as a futh Gaussian elimination takes approximately

Inoperations, with n 5000, it follows that
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low given the computer takes 0.002 seconds to perform back-substitution

on a 4000 by4000 matrix, it follows that it can perform
4000

8 x/09 operations second
0.002

solving a generate system of 1000 equations with 1000 unknowns with take

approximately900059000 4.86081 x10" operations, and the computer

4.86081 x10"with need approximately W 65 to compute.
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3. Let Â be an n⇥ (n+ 2) matrix and consider the following steps in a Matlab code:

Determine the number of flops used to compute the elements of x for a given positive interger n.
(Find an expression for the number of flops exactly, without approximation for large n.)
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Additions Sa n2-n same as multiplication

one floating-point subtraction from each multiplication
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4. (a) Write a Matlab code to compute the LU -decomposition of a given n⇥ n matrix A following

the algorithm discussed in class. Your code need not perform row interchanges (pivoting), but

should check for very small pivot elements and provide a warning if one is encountered.

(b) Use your code to compute the L and U factors for the following matrices:

(i) A=[6 3 2; -1 4 2; 1 3 -5]; (ii) A=hilb(5);

Print out L and U and compute norm(A-L*U) for each case. The latter is Matlab’s calculation

of the distance (i.e. norm) between A and the product LU . What are the expected values

for this norm?
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By definition given above, elimination matrix M has the

form of
o

0, where the bottom entries should be in the same column.
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for permutation matrix P, the productPA is a new matrix

whose rows consists of the rows of A rearranged in the new order.


