Assignment 2, due before class, Thursday June 8, 2023.
Haowen $\mathrm{He} \quad$ heh4@rpi.edu

1. Let $P(x)=x^{3}-2 x^{2}-5 x+8$.
(a) Show analytically (following the work in class) that $P(x)$ has three real roots, and find intervals of x that bracket each root individually.
(b) Write a Matlab function that determines the root of a function using the bisection method. Use your function to determine the three roots of $P(x)$. For each root, use the stopping criterion $b-a<10^{-6}$, where $[a, b]$ is the interval of the bracket at the $n^{\text {th }}$ iteration. (Hint: see the example Matlab codes on LMS.)
(c) Repeat the work in part (b), but now using the method of false position (as discussed in class). For each root, use the stopping criterion $\left|x_{n+1}-x_{n}\right|<10^{-6}$, where x_{n} and x_{n+1} are successive approximations of the root during the iteration.
(a) Consider the cubic polynomial $P(x)=x^{3}-2 x^{2}-5 x+8$.

It follows that $P(x)$ is continuous everywhere
and has at most three distinct roots. We want
to show that $P(x)$ changes sign on some intervals
so that $P(x)$ must have a root on that interval
by the intermediate value theorem. From
the plot of $P(x)$ on the right, we can identify three such intervals: check: setting $P^{\prime}(x)=3 x^{-5 t}-4 x-5=0$

$$
\begin{aligned}
& \Rightarrow x_{1} \approx-0.8, x_{2} \approx \alpha .1 \\
& P^{\prime \prime}(x)=6 x-4 \Rightarrow P^{\prime}\left(x_{1}\right)<0 \& P\left(x_{2}\right)>0
\end{aligned}
$$

- $[-3,-\alpha] \quad P(-3)=-2 \alpha<0, P(-\alpha)=\alpha>0$
- $[1,2] \quad P(1)=2>0, P(2)=-2<0$
- $[2,3] \quad P(\alpha)=-\alpha<0, P(3)=\alpha>0$

Therefore, $P(x)$ has three distinct real roots, and there is a unique
root in each of the three intervals above.

```
function x=myBisection(f,xspan,tol)
% Find a root x of the equation f(x)=0 using the
% bisection method. The initial interval is xspan=[a,b]
% and the iteration stops when b-a<tol.
a=xspan(1);
b=xspan(2);
fa=feval(f,a);
if fa==0 myBisection,m
end
fb=feval(f,b); from in-class example
        x=b; return
end
if fa*fb>0
        error('Error : f(a)*f(b)>0')
```

end
$\mathrm{n}=0$;
while $b-a>t o l$
use the midpoint of the
$\mathrm{n}=0$;
while $b-a>t o l$ interval to upclate the endpoints $\mathrm{n}=\mathrm{n}+1$;
$x=(a+b) / 2 ; f x=f e v a l(f, x)$;
fprintf(' $n=\% d \quad a=\% 1.8 f \quad b=\% 1.8 f f(x)=\% 1.2 e \backslash n ', n, a, b, f x)$
if $f x==0$
return
end
if $f x * f a<0$
$b=x ; f b=f x$;
else
$a=x ; f a=f x$;
end
end
\% clear all variables and figures.
clear all
close all

\% Set defaults for plotting

fontSize=24; lineWidth=2; markerSize=10; set(0,'DefaultLineMarkerSize', markerSize); set(0,'DefaultLineLineWidth',lineWidth); set(0,'DefaultAxesFontSize',fontSize); set(0,'DefaultLegendFontSize',fontSize);
\% define and plot the polynomial $y=x . \wedge 3-2 * x .{ }^{\wedge} 2-5 * x+8$ $\mathrm{P}=$ @ (x) $\mathrm{x} .{ }^{\wedge} 3-2 * \mathrm{x} .{ }^{\wedge} 2-5 * \mathrm{x}+8$;
x=linspace($-3,4,300$);
$\mathrm{y}=\mathrm{P}(\mathrm{x})$;
plot (x,y,'b', x,zeros(size(x)),'r')
\% Root on [-3,-2]
fprintf('Iteration for root on $[-3,-2]: \ n ')$
xspan=[-3,-2]; tol=10e-6;
x1=myBisection(P,xspan,tol);
\% Root on [1,2]
fprintf('Iteration for root on $[1,2]: \backslash n ')$
xspan=[1,2]; tol=10e-6;
x2=myBisection($\mathrm{P}, \mathrm{xspan}$, to);
\% Root on [2,3]
fprintf('Iteration for root on $[2,3]: \backslash n ')$
xspan=[2,3]; tol=10e-6;
x3=myBisection(P,xspan,tol);
\% plot roots
hold on
roots =[x1 x2 xu];
plot(roots, zeros (3,1), 'ko')
hold off
xlabel('x')
ylabel('P(x)')
title('Roots of a Polynominal using Bisection')

Iteration for root on $[-3,-2]$:
$n=1 \quad a=-3.00000000 \quad b=-2.00000000 f(x)=-7.62 e+00$
$n=2 \quad a=-2.50000000 b=-2.00000000 f(x)=-2.27 e+00$
$n=3 \quad a=-2.25000000 \quad b=-2.00000000 f(x)=-1.95 e-03$
$n=4 \quad a=-2.12500000 \quad b=-2.00000000 \quad f(x)=1.03 e+00$
$n=5 \quad a=-2.12500000 \quad b=-2.06250000 \quad f(x)=5.23 e-01$
$n=6 \quad a=-2.12500000 \quad b=-2.09375000 \quad f(x)=2.62 e-01$
$n=7 \quad a=-2.12500000 b=-2.10937500 f(x)=1.31 e-01$
$n=8 \quad a=-2.12500000 \quad b=-2.11718750 \quad f(x)=6.45 e-02$
$n=9 \quad a=-2.12500000 \quad b=-2.12109375 \quad f(x)=3.13 e-02$
$n=10 \quad a=-2.12500000 \quad b=-2.12304688 f(x)=1.47 e-02$
$n=11 \quad a=-2.12500000 \quad b=-2.12402344 f(x)=6.37 e-03$
$n=12 a=-2.12500000 \quad b=-2.12451172 f(x)=2.21 e-03$
$n=13 a=-2.12500000 \quad b=-2.12475586 f(x)=1.28 e-04$
$n=14 \quad a=-2.12500000 b=-2.12487793 f(x)=-9.13 e-04$
$n=15 \quad a=-2.12493896 \quad b=-2.12487793 \quad f(x)=-3.93 e-04$
$\mathrm{n}=16 \quad \mathrm{a}=-2.12490845 \mathrm{~b}=-2.12487793 \mathrm{f}(\mathrm{x})=-1.32 \mathrm{e}-04$
$n=17 \quad a=-2.12489319 b=-2.12487793 f(x)=-2.37 e-06$
Iteration for root on $[1,2]$:
$n=1 \quad a=1.00000000 \quad b=2.00000000 f(x)=-6.25 e-01$
$n=2 \quad a=1.00000000 b=1.50000000 f(x)=5.78 e-01$
$n=3 \quad a=1.25000000 b=1.50000000 f(x)=-5.66 e-02$
$n=4 \quad a=1.25000000 b=1.37500000 f(x)=2.53 e-01$
$n=5 \quad a=1.31250000 \quad b=1.37500000 f(x)=9.63 e-02$
$n=6 \quad a=1.34375000 b=1.37500000 f(x)=1.93 e-02$
$n=7 \quad a=1.35937500 \quad b=1.37500000 f(x)=-1.88 e-02$
$n=8 \quad a=1.35937500 \quad b=1.36718750 f(x)=2.29 e-04$
$n=9 \quad a=1.36328125 \quad b=1.36718750 \quad f(x)=-9.29 e-03$
$\mathrm{n}=10 \quad \mathrm{a}=1.36328125 \mathrm{~b}=1.36523438 \mathrm{f}(\mathrm{x})=-4.53 \mathrm{e}-03$
$n=11 \quad a=1.36328125 \quad b=1.36425781 f(x)=-2.15 e-03$
$n=12 \quad a=1.36328125 \quad b=1.36376953 f(x)=-9.61 e-04$
$n=13 \quad a=1.36328125 \quad b=1.36352539 f(x)=-3.66 e-04$
$\mathrm{n}=14 \mathrm{a}=1.36328125 \mathrm{~b}=1.36340332 \mathrm{f}(\mathrm{x})=-6.85 \mathrm{e}-05$
$n=15 \quad a=1.36328125 \quad b=1.36334229 f(x)=8.03 e-05$
$n=16 \quad a=1.36331177 \quad b=1.36334229 f(x)=5.91 e-06$
$n=17 \quad a=1.36332703 b=1.36334229 f(x)=-3.13 e-05$

Iteration for root on [2,3] :
$n=1 \quad a=2.00000000 \quad b=3.00000000 \quad f(x)=-1.38 e+00$
$n=2 \quad a=2.50000000 \quad b=3.00000000 f(x)=-7.81 e-02$
$n=3 \quad a=2.75000000 \quad b=3.00000000 f(x)=8.57 e-01$
$n=4 \quad a=2.75000000 \quad b=2.87500000 \quad f(x)=3.65 e-01$
$\mathrm{n}=5 \quad \mathrm{a}=2.75000000 \quad \mathrm{~b}=2.81250000 \quad \mathrm{f}(\mathrm{x})=1.37 \mathrm{e}-01$
$\mathrm{n}=6 \quad \mathrm{a}=2.75000000 \mathrm{~b}=2.78125000 \quad \mathrm{f}(\mathrm{x})=2.79 \mathrm{e}-02$
$\mathrm{n}=7 \mathrm{a}=2.75000000 \mathrm{~b}=2.76562500 \mathrm{f}(\mathrm{x})=-2.55 \mathrm{e}-02$
$\mathrm{n}=8 \quad \mathrm{a}=2.75781250 \mathrm{~b}=2.76562500 \mathrm{f}(\mathrm{x})=1.10 \mathrm{e}-03$
$\mathrm{n}=9 \quad \mathrm{a}=2.75781250 \mathrm{~b}=2.76171875 \mathrm{f}(\mathrm{x})=-1.22 \mathrm{e}-02$
$n=10 \quad a=2.75976562 \quad b=2.76171875 \quad f(x)=-5.56 e-03$
$\mathrm{n}=11 \mathrm{a}=2.76074219 \mathrm{~b}=2.76171875 \mathrm{f}(\mathrm{x})=-2.23 \mathrm{e}-03$
$\mathrm{n}=12 \mathrm{a}=2.76123047 \mathrm{~b}=2.76171875 \mathrm{f}(\mathrm{x})=-5.64 \mathrm{e}-04$
$\mathrm{n}=13 \mathrm{a}=2.76147461 \mathrm{~b}=2.76171875 \mathrm{f}(\mathrm{x})=2.70 \mathrm{e}-04$
$n=14 \quad a=2.76147461 \quad b=2.76159668 \quad f(x)=-1.47 e-04$
$\mathrm{n}=15 \quad \mathrm{a}=2.76153564 \mathrm{~b}=2.76159668 \mathrm{f}(\mathrm{x})=6.14 \mathrm{e}-05$
$\mathrm{n}=16 \quad \mathrm{a}=2.76153564 \mathrm{~b}=2.76156616 \mathrm{f}(\mathrm{x})=-4.29 \mathrm{e}-05$
$\mathrm{n}=17 \mathrm{a}=2.76155090 \mathrm{~b}=2.76156616 \mathrm{f}(\mathrm{x})=9.23 \mathrm{e}-06$
\Rightarrow three roots of $P(x)$
using bisection method
$\int x_{1} \approx-2.1249$
$x_{2} \approx 1.3633$
1
$x_{3} \approx 2.7616$
b=xspan(2);
fa=feval (fa);
if $f a==0$
$\mathrm{x}=\mathrm{a}$; return
end
$f b=f e v a l(f, b) ;$
if $f b==0$
$\mathrm{x}=\mathrm{b}$; return
end
Instead of using the midpoint of the interval
if $f a * f b>0$
error('Error : $f(a) * f(b)>0 ')$
end
for $n=1$: nMax
$x 1=a-f a *(b-a) /(f b-f a) ;$
to update the interval endpoints, use the zero of
fx=feval(f,x1);
fprintf(' $\left.n=\% d x=\% 1.13 f f(x)=\% 1.2 e \backslash n^{\prime}, n, x 1, f x\right)$
if $f x==0$
$\mathrm{x}=\mathrm{x} 1$;
return
end
if $f x * f a<0$
$\mathrm{b}=\mathrm{x} 1$; $\mathrm{fb}=\mathrm{fx}$;
else
$a=x 1 ; f a=f x ;$
end
if $n>1$
if abs (x1-x)<tol
$\mathrm{x}=\mathrm{x} 1$;
return
end
end
$\mathrm{x}=\mathrm{x} 1$;
end

Iteration for root on $[-3,-2]$: $n=1 \quad x=-2.0833333333333 \quad f(x)=6.94 e-01$ $n=2 \quad x=-2.1113604488079 \quad f(x)=2.29 e-01$ $n=3 \quad x=-2.1205152088336 \quad f(x)=7.43 e-02$ $n=4 \quad x=-2.1234766700117 \quad f(x)=2.40 e-02$ $n=5 \quad x=-2.1244316547919 \quad f(x)=7.73 e-03$ $n=6 \quad x=-2.1247392961840 \quad f(x)=2.49 e-03$ $n=7 \quad x=-2.1248383681071 \quad f(x)=8.02 e-04$ $n=8 \quad x=-2.1248702695645 \quad f(x)=2.58 e-04$ $n=9 \quad x=-2.1248805415802 \quad f(x)=8.31 e-05$ $n=10 \quad x=-2.1248838490514 \quad f(x)=2.68 e-05$
Iteration for root on $[1,2]$: $n=1 \quad x=1.5000000000000 \quad f(x)=-6.25 e-01$ $n=2 x=1.3809523809524 f(x)=-8.53 e-02$ $n=3 x=1.3653686826843 f(x)=-9.94 e-03$ $n=4 \quad x=1.3635612027761 \quad f(x)=-1.14 e-03$ $n=5 \quad x=1.3633547934626 \quad f(x)=-1.30 e-04$ $n=6 \quad x=1.3633312644246 \quad f(x)=-1.48 e-05$ $n=7 x=1.3633285828500 \quad f(x)=-1.68 e-06$ Iteration for root on [2,3] : $n=1 \quad x=2.5000000000000 \quad f(x)=-1.38 e+00$ $n=2 x=2.7037037037037 f(x)=-3.74 e-01$ $n=3 x=2.7504279356385 \quad f(x)=-7.53 e-02$ $n=4 \quad x=2.7594789862117 f(x)=-1.42 e-02$ $n=5 x=2.7611713093732 f(x)=-2.64 e-03$ $n=6 \quad x=2.7614856100351 \quad f(x)=-4.89 e-04$ $n=7 x=2.7615439092682 f(x)=-9.07 e-05$ $n=8 \quad x=2.7615547206036 f(x)=-1.68 e-05$ $n=9 \quad x=2.7615567254314 \quad f(x)=-3.12 e-06$

Roots of a Polynominal using False Position


```
% clear all variables and figures.
clear all
close all
% Set defaults for plotting
fontSize=24; lineWidth=2; markerSize=10;
set(0,'DefaultLineMarkerSize',markerSize);
set(0,'DefaultLineLineWidth',lineWidth);
set(0,'DefaultAxesFontSize',fontSize);
set(0,'DefaultLegendFontSize',fontSize);
% define and plot the polynomial y=x.^3-2*x.^2-5*x+8
P = @(x) x.^ 3-2*x.^ 2-5*x+8;
x=linspace(-3,4,300);
y=P(x);
plot(x,y,'b',x,zeros(size(x)),'r')
% Root on [-3,-2]
fprintf('Iteration for root on [-3,-2] :\n')
xspan=[-3,-2]; tol=10e-6; nMax=100;
x1=myFalsePosition(P,xspan,tol,nMax);
% Root on [1,2]
fprintf('Iteration for root on [1,2] :\n')
xspan=[1,2]; tol=10e-6; nMax=100;
x2=myFalsePosition(P,xspan,tol,nMax);
% Root on [2,3]
fprintf('Iteration for root on [2,3] :\n')
xspan=[2,3]; tol=10e-6; nMax=100;
x3=myFalsePosition(P,xspan,tol,nMax);
% plot roots
hold on
roots=[x1 x2 x3];
plot(roots,zeros(3,1),'ko')
hold off
xlabel('x')
ylabel('P(x)')
title('Roots of a Polynominal using False Position')
```

2. Find all fixed points of the following $\mathrm{g}(\mathrm{x})$:
(a) $\frac{x+6}{3 x-2} ;$
(b) $\frac{8+2 x}{2+x^{2}}$;
(c) x^{5}.
(a) We have $g_{1}(x)=\frac{x+6}{3 x-2}$. The fixed points of $g_{1}(x)$ are the solutions of $g_{1}(x)=x \Rightarrow \frac{x+6}{3 x-2}=x$

$$
\begin{gathered}
x+6=3 x^{2}-2 x \\
3 x^{2}-3 x-6=0 \\
x^{2}-x-2=(x-2)(x+1)=0 \\
\Rightarrow x=-1,2
\end{gathered}
$$

NOT

The fixed points are found to be $-1,2$. Local convergence requires that $\left|g^{\prime}(x)\right|<1$ at the fixed point. And since $g_{1}^{\prime}(x)=-\frac{20}{(3 x-2)^{2}}$, we note that $g_{1}^{\prime}(-1)=-\frac{4}{5}, g_{1}^{\prime}(\alpha)=-\frac{5}{4}$.

Thus, the fixed-point iteration is locally convergent at -1 , but not at 2 .
(b) We have $g_{2}(x)=\frac{8+2 x}{2+x^{2}}$. The fixed points of $g_{2}(x)$ are the solutions of $g_{2}(x)=x \Rightarrow \frac{8+2 x}{2+x^{2}}=x$

$$
8+2 x=2 x+x^{3}
$$

$$
x^{3}-8=0
$$

therefore, $x=2$, is a fixed point and the other two fixed points, $x=-1 \pm \sqrt{3} i$ are complex. Now since $g_{2}^{\prime}(x)=\frac{-2 x^{2}-16 x+4}{\left(2+x^{2}\right)^{2}}$, we note that $g_{2}^{\prime}(\alpha)=-1$, thus, the fixed-point iteration is not locally convergent at 2 .
(C) We have $g_{3}(x)=x^{5}$. The fixed points of $g_{3}(x)$ are the solutions of $g_{3}(x)=x \Rightarrow x^{5}=x$

$$
\begin{gathered}
x^{5}-x=0 \\
x\left(x^{4}-1\right)=0 \\
x\left[\left(x^{2}+1\right)(x+1)(x-1)\right]=0
\end{gathered}
$$

$\Rightarrow x=0, \pm 1$ complex fixed points $\pm i$ omitted
The fixed points are found to be $0, \pm 1$. Local convergence
requires that $\left|g_{3}^{\prime}(x)\right|<1$ at the fixed point. And since $g_{3}^{\prime}(x)=5 x^{4}$, we note that $g_{3}^{\prime}(0)=0, g_{3}^{\prime}(\pm 1)=5$.

Thus, the fixed-point iteration is locally convergent at 0 , but not at ± 1.

3. Consider the fixed-point iteration $x_{n+1}=g\left(x_{n}\right)$, where $g(x)=x+\ln (2-x)$, and define the interval $I=[1 / 2,4 / 3]$.
(a) Show that $g(x) \in I$ whenever $x \in I$, i.e., $g(x)$ maps the interval I into itself, and thus a fixed point of $g(x)$ exists for $x \in I$.
(b) Consider $g^{\prime}(x)$ for $x \in I$ to show that the fixed-point iteration converges to the unique fixed point of $g(x)$ assuming x_{0} is chosen in the interval I.
(a) Given $g(x)=x+\ln (2-x)$, we have $g^{\prime}(x)=1-\frac{1}{2-x}=\frac{1-x}{2-x}$.

For $x \in I=[1 / 2,4 / 3]$, we note that the denominator of
$g^{\prime}(x)$ is always positive. And the numerator is positive for
$1 / 2 \leqslant x<1$, zero for $x=1$, and negative for $1<x<4 / 3$,
It implies that $g(x)$ is increasing for $1 / 2 \leqslant x<1$ and decreasing for $1<x<4 / 3$. Note that $1 / 2<g(1 / 2) \approx 0.9<g(4 / 3) \approx 0.93$ $<g(1)=1<4 / 3$, which follows that $g(x)$ remains in the desired interval for $x \in I=[1 / 2,4 / 3]$.

Alternatively, to prove that $g(x)$ maps the interval I into itself, we can evaluate $g(x)$ at the endpoints of I and at $x=1$ where $g^{\prime}(x)=0$. If the global extrema for I are all in I, then we can draw the conclusion that $g(x)$ maps I into I.

$$
\begin{aligned}
& \text { At } x=\frac{1}{2}, \quad g(x) \approx 0.91 \in I \\
& \text { At } x=\frac{4}{3}, \quad g(x) \approx 0.93 \in I
\end{aligned}
$$

Setting $g^{\prime}(x)=\frac{1-x}{2-x}=0$, we have that $x=1$, and that $g(1)=1 \in I$. Therefore, we have shown that the global extrema for I are all in I, indicating that $g(x)$ remains in the desired interval for $x \in I=[1 / 2,4 / 3]$.
(b) Grom above, we have $g^{\prime}(x)=1-\frac{1}{2-x}=\frac{1-x}{2-x}$

$$
g^{\prime \prime}(x)=\frac{-(2-x)+(1-x)}{(2-x)^{2}}=\frac{-1}{(2-x)^{2}}
$$

indicating that $g^{\prime \prime}(x)<0$ for all $x \in I=[1 / 2,4 / 3]$, and thus. $g^{\prime}(x)$ is decreasing monotically in I, and the extrema occurs at the two endpoints. Now since $g^{\prime}\left(\frac{1}{2}\right)=\frac{1}{3}$

$$
g^{\prime}\left(\frac{4}{3}\right)=-\frac{1}{2}
$$

which follows that $\left|g^{\prime}(x)\right| \leq \frac{1}{2}<1$.
\Rightarrow Check if cube root of 4 is a fixed point for the following functions:
setting $g_{1}(x)=\frac{2}{\sqrt{x}}=x \Rightarrow 2=x^{3 / 2} \Rightarrow 4=x^{3}$
setting $g_{2}(x)=\frac{3 x}{4}+\frac{1}{x^{2}}=x \Rightarrow \frac{1}{x^{2}}=\frac{x}{4} \Rightarrow 4=x^{3}$
setting $g_{3}(x)=\frac{2}{3} x+\frac{4}{3 x^{2}}=x \Rightarrow \frac{4}{3 x^{2}}=\frac{1}{3} x \Rightarrow 4=x^{3}$
\Rightarrow Check the rate of convergence for the following functions:

$$
\begin{aligned}
& g_{1}^{\prime}(x)=-x^{-3 / 2}, \text { at } x=\sqrt[3]{4}, g_{1}^{\prime}(x)=-\frac{1}{2} \\
& g_{2}^{\prime}(x)=\frac{3}{4}-2 x^{-3}, \text { at } x=\sqrt[3]{4}, g_{2}^{\prime}(x)=\frac{1}{4} \\
& g_{3}^{\prime}(x)=\frac{2}{3}-\frac{8}{3 x^{3}}, \text { at } x=\sqrt[3]{4}, g_{3}^{\prime}(x)=0
\end{aligned}
$$

$\Rightarrow C, B, A$ converge from fastest to slowest.
5. Consider the functions

$$
f_{1}(x)=x^{3}-2 x-5 ; \quad f_{2}(x)=e^{-x}-x ; \quad f_{3}(x)=x \sin (x)-1 .
$$

(a) Write a Matlab function to compute a root of the function $f(x)$ using Newton's method. Use your code to compute the smallest positive root of each of the functions $f_{i}(x), i=1,2,3$, above. You will need to determine a suitable starting guess, x_{0}, for each case, and use the stopping criterion $\left|x_{n+1}-x_{n}\right|<10^{-12}$.
(b) Repeat the calculations in part (a) using the secant method. (You may use the values for x_{1} obtained in part (a) along with x_{0} for the two starting values needed for the secant method.) Compare the number of iterations needed to compute each roots using the secant method versus the number needed in part (a) using Newton's method.

```
    function xStar=myNewton(f,x0,tol,nMax)
    % find the root of f(x) using Newton's method with starting
    % guess x0. The iteration stops if abs(x(n+1)-x(x))<tol or
    % n>nMax
for n=1:nMax
    x1=x0-feval(f,x0,0)/feval(f,x0,1);
    err=abs(x1-x0);
    if err>tol
        fprintf(' n=%d x(n)=%1.4f err=%1.2e', n,xl,err)
        x0=x1;
    else
        fprintf(' n=%d x(n)=%1.4f err=%1.2e (converged)', n,x1,err)
        xStar=x1;
        return
    end
end
n=nMax+1;
fprintf(' n=%d x(n)=%1.4f err=%1.2e (iteration failed)', n,x1,err)
xStar=x1;
function y=NewtonFunction1(x, derivative)
if derivative==0
    y=x^3-2*x-5;
else
    y=3*x^2-2;
end
function y=NewtonFunction2(x, derivative)
if derivative==0
    y=exp(-x)-x;
else
    y=-exp(-x)-1;
end
function y=NewtonFunction3(x, derivative)
if derivative==0
    y=x*sin(x)-1;
else
    y=sin(x)+x*\operatorname{cos(x);}
end
```

```
% Use Newton's method to find the smallest positive root
% of the following functions
%
% f1=x^3-2*x-5, f2=exp(-x)-x, fx=x*sin(x)-1
%
% with tolerance 10e-12
```

```
x1=myNewton('NewtonFunction1',2.0,10e-12,10);
x2=myNewton('NewtonFunction2',0.5,10e-12,10);
x3=myNewton('NewtonFunction3' ,1.0,10e-12,10);
```

```
fprintf('Roots \(\left.=\% 0.15 e \% 0.15 e \% 0.15 e \backslash n^{\prime}, x 1, x 2, x 3\right)\)
    \(n=1 \times(n)=2.1000\) err=1.00e-01
    \(n=2 x(n)=2.0946\) err=5.43e-03
    \(n=3 x(n)=2.0946\) err=1.66e-05
    \(n=4 \quad x(n)=2.0946\) err=1.56e-10
    \(n=5 \mathrm{x}(\mathrm{n})=2.0946\) err=0.00e+00 (converged)
    \(n=1 \times(n)=0.5663\) err=6.63e-02
    \(n=2 x(n)=0.5671\) err=8.32e-04
    \(n=3 \times(n)=0.5671\) err=1.25e-07
    \(n=4 \quad x(n)=0.5671\) err=2.89e-15 (converged)
    \(n=1 \quad x(n)=1.1147\) err=1.15e-01
    \(n=2 x(n)=1.1142\) err=5.72e-04
    \(n=3 x(n)=1.1142\) err=1.40e-08
    \(n=4 \times(n)=1.1142\) err=2.22e-16 (converged)
Roots \(=2.094551481542327 e+005.671432904097838 e-011.114157140871930 e+00\)
```

```
function xStar=mySecant(f,x0,x1,tol,nMax)
% find the root of f(x) using secant method with starting
% guesses x0 and x1. The iteration stops if abs(x(n+1)-x(n))<tol or
% n>nMax
n=0;
while n<nMax+1
    n=n+1;
    fx0=feval(f,x0);
    fx1=feval(f,x1);
    x=x1-fx1*(x1-x0)/(fx1-fx0);
    err=abs(x-x1);
    if err>tol
            fprintf(' n = %d x0 = %1.8f x1 = %1.8f err = %1.2d \n', n,x0,x1,err)
            x0=x1;
            x1=x;
        else
            fprintf(' n = %d x0 = %1.8f x1 = %1.8f err = %1.2d (converged) \n',
        n,x0,x1,err)
            xStar=x;
            return
        end
end
```

```
>> mySecant(@(x) x^3-2*x-5, 2.0, 2.0946, 10e-12, 10)
n = 1 x0 = 2.000000000 x1 = 2.09460000 err = 5.12e-05
n = 2 x0 = 2.09460000 x1 = 2.09454880 err = 2.68e-06
n = 3 x0 = 2.09454880 x1 = 2.09455148 err = 7.33e-11
n = 4 x0 = 2.09455148 x1 = 2.09455148 err = 00 (converged)
ans =
    2.0946
```

>> mySecant(@(x) $\exp (1) . \wedge(-x)-x, 0.5,0.5671,10 e-12,10)$
$\mathrm{n}=1 \times 0=0.50000000 \times 1=0.56710000 \mathrm{err}=4.28 \mathrm{e}-05$
$\mathrm{n}=2 \times 0=0.56710000 \times 1=0.56714276 \mathrm{err}=5.31 \mathrm{e}-07$
$\mathrm{n}=3 \mathrm{x} 0=0.56714276 \mathrm{x} 1=0.56714329 \mathrm{err}=4.16 \mathrm{e}-12$ (converged)
ans =

0.5671

>> mySecant(@(x) x*sin(x)-1, 1.0, 1.1142, 10e-12, 10)
$\mathrm{n}=1 \times 0=1.00000000 \times 1=1.11420000 \mathrm{err}=4.29 \mathrm{e}-05$
$\mathrm{n}=2 \mathrm{x0}=1.11420000 \mathrm{x} 1=1.11415714 \mathrm{err}=3.57 \mathrm{e}-09$
$\mathrm{n}=3 \mathrm{x} 0=1.11415714 \mathrm{x} 1=1.11415714 \mathrm{err}=6.66 \mathrm{e}-15$ (converged)
ans $=$

$$
1.1142
$$

