(3 Multiple Choice Questions) 4.5pts + (3 Questions) 15.5pts $+(1$ Question) 1 bonus pt

## Multiple Choice Questions

1. (1.5 pts) Find the inverse Laplace Transform of $F(s)=\frac{4-2 s}{s^{2}+2 s+10}=\frac{-2(s+1)+6}{(s+1)^{2}+9}$
a. $f(t)=2 e^{t}(\sin 3 t-\cos 3 t)$
b. $f(t)=2 e^{-t}(\sin 3 t-\cos 3 t) \xrightarrow{2 n^{-1}}-2 e^{-t} \cos 3 t+2 e^{-t} \sin 3 t$
c. $f(t)=2 e^{3 t}(\sin t-\cos t)$
d. $f(t)=2 e^{-3 t}(\sin t-\cos t)$
answer: $\qquad$
2. ( $\mathbf{1 . 5} \mathbf{~ p t s )}$ Given the system of two species, $x$ and $y$, in a closed environment,

$$
\frac{d x}{d t}=\downarrow x\left(1-\frac{y \hat{k}}{3}\right) ; \quad \frac{d y}{d t}=y\left(-1+\frac{x}{3}\right)
$$

Which of the following is true?
a. $x$ is the prey, $y$ is the predator
b. $x$ is the predator, $y$ is the prey
c. $x$ and $y$ are competing species
d. None of the above
answer: $\qquad$
3. (1.5 pts) Given the Fourier series of a periodic function $f(x)$ be

$$
f(x)=\frac{2}{5}+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}(1+\cos (n \pi)) \sin (n \pi x)
$$

Find $a_{0}, a_{1}, b_{3}$
a. $a_{0}=\frac{1}{5} ; a_{1}=0 ; b_{3}=\frac{2}{3 \pi} \quad \frac{a_{0}}{2}=\frac{2}{5}$

$$
b_{3}=\frac{1}{3}(1+\cos 3 \pi)
$$

b. $a_{0}=\frac{1}{5} ; a_{1}=\frac{2}{\pi} ; b_{3}=0$
$=0$
c. $a_{0}=\frac{4}{5} ; a_{1}=\frac{2}{\pi} ; b_{3}=\frac{2}{3 \pi}$
$a_{0}=\frac{4}{5}$
d. $a_{0}=\frac{4}{5} ; a_{1}=0 ; b_{3}=0$
answer:

4. ( $5.5 \mathbf{p t s}$ ) Given the nonlinear system describing two species $x$ and $y$ who are competing for food in a closed environment:

$$
x^{\prime}=x(1-x-y)=F ; \quad y^{\prime}=y\left(\frac{3}{4}-y-\frac{x}{2}\right)=G
$$

a. ( 5 pts) Find all the steady state solutions, their eigenvalues and stabilities. (Hint: use Jacobian to find eigenvalues)
b. (0.5 pt) Do the two species ( $x$ and $y$ ) co-exist? (Yep/No) $\quad A=\left(\begin{array}{ll}g_{x} & \mathscr{I}_{y} \\ G_{x} & G_{y}\end{array}\right)$
a) $x^{\prime}=0 \Rightarrow x=0$ OR $x=1-y$

$$
\begin{aligned}
& x=0, \\
& y^{\prime}=y\left(\frac{3}{4}-y\right)=0 \\
& \Rightarrow y=0 \text { OR } y=\frac{3}{4} \\
& (0,0), \quad\left(0, \frac{3}{4}\right)
\end{aligned}
$$

$$
x=1-y
$$

$$
=\left(\begin{array}{ll}
1-2 x-y & -x \\
-y / 2 & \frac{3}{4}-2 y-\frac{x}{2}
\end{array}\right)
$$

$$
y^{\prime}=y\left(\frac{3}{4}-y-\frac{1}{2}(1-y)\right)=0
$$

$$
y=0 \quad \text { OR } \quad \frac{1}{4}-\frac{1}{2} y=0
$$

$$
x=1, \quad y=\frac{1}{2}
$$

$$
x=1-\frac{1}{2}=\frac{1}{2}
$$

$$
\left(\frac{1}{2}, \frac{1}{2}\right)
$$

@(0,0), $\left.A\right|_{(0,0)}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3 / 4\end{array}\right) \Rightarrow \lambda=1, \frac{3}{4} \quad$ (unstable)
@ $\left(0, \frac{3}{4}\right),\left.A\right|_{\left(0, \frac{3}{4}\right)}=\left(\begin{array}{cc}\frac{1}{4} & 0 \\ -\frac{3}{8} & -\frac{3}{4}\end{array}\right) \Rightarrow \lambda=\frac{1}{4},-\frac{3}{4} \quad$ (unstable)
@ $(1,0),\left.A\right|_{(1,0)}=\left(\begin{array}{cc}-1 & -1 \\ 0 & 1 / 4\end{array}\right) \Rightarrow \lambda=-1, \frac{1}{4}$ (unstable)
@( $\left.\frac{1}{2}, \frac{1}{2}\right),\left.A\right|_{\left(\frac{1}{2}, \frac{1}{2}\right)}=\left(\begin{array}{cc}-\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{4} & -\frac{1}{2}\end{array}\right) \Rightarrow \begin{aligned} & \left(-\frac{1}{2}-\lambda\right)^{2}+\frac{1}{8}=0 \\ & \lambda^{2}+\lambda+\frac{1}{4}+\frac{1}{8}=0\end{aligned}$
b) Yes.

$$
\lambda=\frac{-1 \pm \sqrt{1-4\left(\frac{3}{8}\right)}}{2}=-\frac{1}{2} \pm \frac{1}{2 \sqrt{2}}
$$

(asymptotically stable)
5. (5 pts) Use the method of Laplace transforms to solve an IVP

$$
\mathcal{L}\left(y^{\prime \prime}+3 y^{\prime}+2 y=u_{\pi}(t)+2 \delta(t-\pi), \text { where } y(0)=0 ; \quad y^{\prime}(0)=1 .\right.
$$

$$
s^{2} \mathcal{L}\{y\}-y^{\prime}(0)-s y(0)+3(s 2 r\{y\}-y(0))+22 n\{y\}=\frac{e^{-\pi s}}{s}+2 e^{-\pi s}
$$

$$
\begin{aligned}
& 2\{y\}\left(s^{2}+3 s+2\right)=\frac{1+2 s}{s} e^{-\pi s}+1 \\
& \mathcal{L}\{y\}=\frac{1+2 s}{s(s+2)(s+1)} e^{-\pi s}+\frac{1}{(s+2)(s+1)}
\end{aligned}
$$

Consider $\frac{1+2 s}{s(s+2)(s+1)}=\frac{A}{s}+\frac{B}{s+2}+\frac{c}{s+1}=\underbrace{\frac{1}{2 s}-\frac{3}{2(s+2)}+\frac{1}{s+1}}_{\mathcal{F}_{1}(s)}$

$$
=\frac{A(s+2)(s+1)+B s(s+1)+C s(s+2)}{s(s+2)(s+1)}
$$

$$
\begin{array}{ll}
S^{2}: & A+B+C=0  \tag{1}\\
S^{1}: & 3 A+B+2 C=2 \\
S^{0}: & 2 A=1 \Rightarrow A=\frac{1}{2}
\end{array}
$$

(2) $-(1)$,

$$
\begin{aligned}
2 A+C & =2 \\
C & =1 \\
B & =-\frac{3}{2}
\end{aligned}
$$

Consider $\frac{1}{(s+2)(s+1)}=\frac{D}{s+2}+\frac{E}{s+1}=\frac{D s+D+E s+2 E}{(s+2)(s+1)}$

$$
\begin{aligned}
& S^{\prime}: D+E=O \\
& S^{0}: \quad D+2 E=1 \Rightarrow E=1, D=-1 \\
& =-\frac{1}{s+2}+\frac{1}{s+1} \\
& g_{1}(s) \xrightarrow{2 n^{-1}} \frac{1}{2}-\frac{3}{2} e^{-2 t}+e^{-t}=f(t) \\
& f(t-\pi)=\frac{1}{2}-\frac{3}{2} e^{-2(t-\pi)}+e^{-(t-\pi)} \\
& y=u_{\pi}(t)\left(\frac{1}{2}-\frac{3}{2} e^{-2(t-\pi)}+e^{-(t-\pi)}\right)-e^{-\alpha t}+e^{-t}
\end{aligned}
$$

6. (5 pts) Find the Fourier Series for $f(x)=\left\{\begin{array}{cc}-x & -1 \leq x<0 \\ 0 & 0 \leq x<1\end{array} ; f(x+2)=f(x)\right.$.

$$
\begin{aligned}
& a_{0}=\frac{1}{\alpha} \int_{-\alpha}^{\alpha} f(x) d x=\int_{-1}^{0}-x d x=-\left.\left(\frac{x^{\alpha}}{\alpha}\right)\right|_{-1} ^{0}=\frac{1}{2} \\
& a_{n}=\frac{1}{\alpha} \int_{-\alpha}^{\alpha} f(x) \cos \frac{n \pi x}{\alpha} d x=\int_{-1}^{0}-x \cos n \pi x d x \\
& \text { let } u=x \quad d v=\cos n \pi x d x \\
& d u=d x \quad v=\frac{1}{n \pi} \sin n \pi x \\
& =-\left(\left.\frac{x}{n \pi} \sin n \pi x\right|_{-1} ^{0}-\frac{1}{n \pi} \int_{-1}^{0} \sin n \pi x d x\right) \\
& =-\left.\frac{1}{n^{2} \pi^{2}} \cos n \pi x\right|_{-1} ^{0}=-\frac{1}{n^{2} \pi^{2}}(1-\cos n \pi) \\
& =\frac{1}{n^{2} \pi^{2}}(\cos n \pi-1)=\left\{\begin{array}{cl}
0, & n=2 k \\
-\frac{\alpha}{n^{2} \pi^{2}}, & n=2 k \pm 1
\end{array}\right. \\
& b_{n}=\frac{1}{\alpha} \int_{-\alpha}^{\alpha} f(x) \sin \frac{n \pi x}{\alpha} d x=\int_{-1}^{0}-x \sin n \pi x x d x \text { let } u=x \quad d u=\sin n \pi x d x \\
& d u=d x \quad v=-\frac{1}{n \pi} \cos n \pi x \\
& =-\left(-\left.\frac{x}{n \pi} \cos n \pi x\right|_{-1} ^{0}+\frac{1}{n \pi} \int_{-1}^{0} \cos n \pi x d x\right) \\
& =\frac{1}{n \pi} \cos n \pi-\left.\frac{1}{n^{2} \pi^{\alpha}} \sin n \pi x\right|_{-1} ^{0}= \begin{cases}\frac{1}{n \pi}, & n=2 k \\
-\frac{1}{n \pi}, & n=2 k \pm 1\end{cases} \\
& f(x)=\frac{1}{4}+\sum_{n=1}^{\infty}\left(\frac{1}{n^{2} \pi^{2}}(\cos n \pi-1) \cos n \pi x+\frac{1}{n \pi} \cos n \pi \sin n \pi x\right)
\end{aligned}
$$

OR

$$
=\frac{1}{4}+\sum_{n=1}^{\infty}\left(\frac{-2}{(2 n-1)^{2} \pi^{2}} \cos (2 n-1) \pi x+\frac{(-1)^{n}}{n \pi} \sin n \pi x\right)
$$

Bonus Question (1 pt) Find the Laplace Transform of $f(t)=\cos \left(t-\frac{\pi}{2}\right) u_{\pi}(t)$.

$$
\begin{aligned}
& g(t-\pi)=\cos \left(t-\frac{\pi}{2}\right) \\
& g(t)=\cos \left(t+\frac{\pi}{2}\right)=-\sin t \xrightarrow{2} G(s)=-\frac{1}{s^{2}+1} \\
& g(t) \xrightarrow{2} \frac{-e^{-\pi s}}{s^{2}+1}
\end{aligned}
$$

Useful Formulas:

1. Fourier Series $f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right)$ where $a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x ; a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x ; b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x$
2. Laplace Transform for derivatives:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-y(0) \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-y^{\prime}(0)-s y(0) \\
& \mathcal{L}\left\{y^{(n)}\right\}=s^{n} \mathcal{L}\{y\}-y^{(n-1)}(0)-s y^{(n-2)}(0)-\cdots-s^{n-1} y(0)
\end{aligned}
$$

| $f(t)=\mathcal{L}^{-1}\{F(s)\}$ | $F(s)=\mathcal{L}\{f(t)\}$ |
| :---: | :---: |
| 1. 1 | $\frac{1}{s}, \quad s>0$ |
| 2. $e^{a t}$ | $\frac{1}{s-a}, \quad s>a$ |
| 3. $t^{n}, n=$ positive integer | $\frac{n!}{s^{n+1}}, \quad s>0$ |
| 4. $\sin a t$ | $\frac{a}{s^{2}+a^{2}}, \quad s>0$ |
| 5. $\cos a t$ | $\frac{s}{s^{2}+a^{2}}, \quad s>0$ |
| 6. $\sinh a t$ | $\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$ |
| 7. $\cosh a t$ | $\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$ |
| 8. $e^{a t} \sin b t$ | $\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$ |
| 9. $e^{a t} \cos b t$ | $\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$ |
| 10. $t^{n} e^{a t}, n=$ positive integer | $\frac{n!}{(s-a)^{n+1}}, \quad s>a$ |
| 11. $u_{c}(t)$ | $\frac{e^{-c s}}{s}, \quad s>0$ |
| 12. $u_{c}(t) f(t-c)$ | $e^{-\alpha} F(s)$ |
| 13. $e^{t} f(t)$ | $F(s-c)$ |
| 14. $f(c t)$ | $\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$ |
| 15. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$ | $F(s) G(s)$ |
| 16. $\delta(t-c)$ | $e^{-a}$ |
| 17. $f^{(n)}(t)$ | $s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$ |
| 18. $(-t)^{n} f(t)$ | $F^{(n)}(s)$ |

