MATH 2400 EXAM 2 SPRING 2023 Name Haowen He Section

(3 Multiple Choice Questions) 4.5pts + (3 Questions) 15.5pts + (1 Question) 1 bonus pt

Multiple Choice Questions

1. (1.5 pts) Given A =
$$\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$$
. Which of the following statement is true?

- $det(A) = | \cdot (-a) (-1) \cdot a = 0$ a. A is defective.
- b. A is chaotic.
- c. A is singular.
- d. None of the above.

- answer: C
- 2. (1.5 pts) Which of the following pair of vectors is linearly independent? Given a, b are arbitrary constants.
 - a. $\binom{a}{2a}, \binom{3\pi}{6\pi}$ **b.** $\binom{ab}{2a}, \binom{ab^2}{2ab}$ c. $\binom{a}{2a}, \binom{3b}{b}$ **d.** $\binom{2\pi}{\pi e}, \binom{2}{e}$

answer:

- 3. (1.5 pts) Given the solution of a linear system be $y = \begin{pmatrix} 3C_1e^{2t} + 2C_2e^{-t} \\ C_1e^{2t} C_2e^{-t} \end{pmatrix}$. This system is $\Lambda_1 = 2 \& \Lambda_2 = -1$
 - **a.** Asymptotically stable
 - **b.** Unstable
 - **c.** Neutrally stable
 - **d.** None of the above

saddle point

answer: _____

unstable

4. (5 pts) Find the general solution of $2x^2y'' + 3xy' - y = x$, $y_1 = x^{1/2}$ by *reduction of order*.

let
$$y = y_1 v = x^{1/2} v$$

 $y' = \frac{1}{4} x^{-1/2} v + x^{1/2} v'$
 $y'' = -\frac{1}{4} x^{-3/2} v + x^{-1/2} v' + x^{1/2} v''$

equation becomes

$$\begin{aligned} 2\chi^{4} \left(-\frac{1}{4}\chi^{-3k}v + \chi^{-1k}v' + \chi^{4k}v'' \right) + 3\chi \left(\frac{1}{4}\chi^{-3k}v + \chi^{4k}v' \right) - \chi^{4k}v = \chi \\ 2\chi^{5k}v'' + 5\chi^{5k}v' = \chi \\ let \quad u = v' \\ u' + 5\chi^{-1}u = \frac{1}{4}\chi^{-3k} \\ let \quad \mathcal{M} = e^{\frac{5}{6}\int \frac{1}{K}d\chi} \\ = \chi^{5k} \\ \left(\chi^{5k}u\right)' = \chi^{5k} \cdot \frac{1}{4}\chi^{-3k} \\ = \frac{1}{4}\chi \\ \chi^{5k}u = \frac{1}{4}\chi^{4} + C_{1} \\ u = \frac{1}{4}\chi^{-1k} + C_{1}\chi^{-5k} \end{aligned}$$

5. (5.5 pts) Given a system
$$\mathbf{y}' = \begin{pmatrix} 3 & -4 \\ 0 & 3 \end{pmatrix} \mathbf{y}$$
, with the matrix $A = \begin{pmatrix} 3 & -4 \\ 0 & 3 \end{pmatrix}$ being defective.

a. (2 pts) Find the corresponding eigenvalues , λ , and the first eigenvector, $x^{(1)}$. **b.**(3.5 pts) Assume $y^{(2)} = x^{(2)}e^{\lambda t}$, where $x^{(2)} = tx^{(1)} + \varphi$ and $(A - \lambda I)\varphi = x^{(1)}$. Find the particular solution of the system, where $y(0) = {2 \choose 3}$.

b) $(A - 31)\vec{\varphi} = \vec{\chi}^{(1)}$ a) $|A - \lambda I| = 0$ $\begin{vmatrix} 3-\lambda & -4 \\ 0 & 3-\lambda \end{vmatrix} = 0$ $\begin{pmatrix} 0 & -4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathcal{Q}_1 \\ \mathcal{Q}_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\Lambda = 3$ (repeated) $Q_1 = \alpha$; $Q_2 = -\frac{1}{4}$ $\Lambda = 3$, $(A - 3I)\overline{X} = 0$ $\overrightarrow{\psi} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} \alpha \\ -\frac{1}{4} \end{pmatrix}$ $\begin{pmatrix} 0 & -4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \pi_{1} \\ \pi_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $= \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -\frac{1}{4} \end{pmatrix}$ $X_1 = 0$; $X_2 = 0$ $\sqrt{y} = C_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{3t}$ $\overrightarrow{\chi} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \overrightarrow{\chi}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ + $C_{a}\left(t\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right) + A\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right) + \left(\begin{smallmatrix}0\\-\frac{1}{4}\end{smallmatrix}\right)\right)e^{3t}$ $= \begin{pmatrix} c_{3} + c_{a}t \\ -\frac{1}{4}c_{a} \end{pmatrix} e^{3t}$ $\vec{y}(0) = \begin{pmatrix} \lambda \\ 3 \end{pmatrix} = \begin{pmatrix} c_3 \\ -\frac{1}{4}c_3 \end{pmatrix}$ $\Rightarrow \overline{y} = \begin{pmatrix} a - iat \\ 3 \end{pmatrix}$ \Rightarrow $C_{a} = -1a;$ $\zeta_{3} = \lambda$

6. (5 pts) Given the nonlinear system:

$$\frac{dx}{dt} = -(2+y)(x+y) = F$$
 $\frac{dy}{dt} = -y(1-x) = G$

a. (3 pts) Find the 3 steady state solutions (i.e. 3 critical points).

b. (2 pts) Find the Jacobian (matrix A) of the system.

a)
$$\chi' = \delta = 0$$
 \Rightarrow $y = -2$ or $y = -\chi$
 $y' = G_1 = 0$
when $y = -\lambda$ when $y = -\chi$
 $y' = \lambda(1-\chi) = 0$ $y' = \chi(1-\chi) = 0$
 $\chi = 1$ $\chi = 0, 1$
 $(1, -\lambda)$ $\chi = 0, y = 0, (0, 0)$
 $\chi = 1, y = -1, (1, -1)$
 $A = \begin{pmatrix} \vartheta_{\chi} & \vartheta_{\chi} \\ G_{\chi} & G_{\chi} \end{pmatrix}$ $\vartheta_{\chi} = -(\lambda+\chi)$
 $\vartheta_{\chi} = -(\chi+\chi) - (\lambda+\chi)$
 $= \begin{pmatrix} -\lambda - \chi & -\lambda - \lambda - \lambda \\ \chi & -1 + \chi \end{pmatrix}$ $G_{\chi} = \chi$
 $G_{\chi} = -(1-\chi)$

$$= \begin{pmatrix} -\lambda - y & -x - \lambda - \lambda y \\ y & -1 + x \end{pmatrix}$$

b

7. Bonus Question (1 pt) Given a system $\mathbf{y}' = \begin{pmatrix} \alpha + 1 & -3 \\ 2 & \alpha + 1 \end{pmatrix} \mathbf{y}$. Determine the value(s) of α where the system is *neutrally stable*.

 $|A - \lambda I| = 0$ $(a + 1 - \lambda)^{a} + 6 = 0$ $a + 1 - \lambda = \pm \sqrt{6} \hat{I}$ $\lambda = a + 1 \mp \sqrt{6} \hat{I}$ neutrally stable a + 1 = 0a = -1