(3 Multiple Choice Questions) 4.5pts + (3 Questions) 15.5pts $+(1$ Question) 1 bonus pt

Multiple Choice Questions

1. ($1.5 \mathbf{p t s}$) Given $A=\left(\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right)$. Which of the following statement is true?
a. A is defective. $\quad \operatorname{det}(A)=1 \cdot(-\alpha)-(-1) \cdot \alpha=0$
b. A is chaotic.
c. A is singular.
d. None of the above.
answer: \qquad
2. ($\mathbf{1 . 5} \mathbf{~ p t s)}$ Which of the following pair of vectors is linearly independent? Given a, b are arbitrary constants.
a. $\binom{a}{2 a},\binom{3 \pi}{6 \pi}$
b. $\binom{a b}{2 a},\binom{a b^{2}}{2 a b}$
c. $\binom{a}{2 a},\binom{3 b}{b}$
d. $\binom{2 \pi}{\pi e},\binom{2}{e}$
answer: $\quad C$
3. ($\mathbf{1 . 5} \mathbf{~ p t s}$) Given the solution of a linear system be $\boldsymbol{y}=\binom{3 C_{1} e^{2 t}+2 C_{2} e^{-t}}{C_{1} e^{2 t}-C_{2} e^{-t}}$. This system is
a. Asymptotically stable $\quad \lambda_{1}=2 \& \lambda_{2}=-1$
b. Unstable
c. Neutrally stable
d. None of the above

answer: b unstable
4. (5 pts) Find the general solution of $2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=x, y_{1}=x^{1 / 2}$ by reduction of order.
let $y=y_{1} v=x^{1 / 2} v$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} x^{-1 / 2} v+x^{1 / 2} v^{\prime} \\
& y^{\prime \prime}=-\frac{1}{4} x^{-3 / 2} v+x^{-1 / 2} v^{\prime}+x^{1 / 2} v^{\prime \prime}
\end{aligned}
$$

equation becomes

$$
\begin{aligned}
& 2 x^{2}\left(-\frac{1}{4} x^{-3 / 2} v+x^{-1 / 2} v^{\prime}+x^{1 / 2} v^{\prime \prime}\right)+3 x\left(\frac{1}{2} x^{-1 / 2} v+x^{1 / 2} v^{\prime}\right)-x^{1 / 2} v=x \\
& 2 x^{5 / 2} v^{\prime \prime}+5 x^{3 / 2} v^{\prime}=x
\end{aligned}
$$

let $u=v^{\prime}$

$$
u^{\prime}+5 / 2 x^{-1} u=\frac{1}{2} x^{-3 / 2}
$$

$$
\text { let } \mu=e^{\frac{5}{2} \int 1 / x d x}
$$

$$
\begin{aligned}
& =x^{5 / 2} \\
\left(x^{5 / 2} u\right)^{\prime} & =x^{5 / 2} \cdot \frac{1}{2} x^{-3 / 2} \\
& =\frac{1}{2} x \\
x^{5 / 2} u & =\frac{1}{4} x^{2}+c_{1} \\
u & =\frac{1}{4} x^{-1 / 2}+c_{1} x^{-5 / 2}
\end{aligned}
$$

$$
\left\{\begin{aligned}
v & =\int u d x \\
& =\frac{1}{2} x^{1 / 2}-\frac{2}{3} l_{1} x^{-3 / 2}+c_{2} \\
y & =x^{1 / 2} v \\
& =\frac{1}{2} x-c_{3} x^{-1}+c_{2} x^{1 / 2}
\end{aligned}\right.
$$

5. (5.5 pts) Given a system $\boldsymbol{y}^{\prime}=\left(\begin{array}{cc}3 & -4 \\ 0 & 3\end{array}\right) \boldsymbol{y}$, with the matrix $A=\left(\begin{array}{cc}3 & -4 \\ 0 & 3\end{array}\right)$ being defective.
a. ($\mathbf{2} \mathbf{~ p t s}$) Find the corresponding eigenvalues, λ, and the first eigenvector, $\boldsymbol{x}^{(1)}$.
b. $(3.5 \mathrm{pts})$ Assume $\boldsymbol{y}^{(2)}=\boldsymbol{x}^{(2)} e^{\lambda t}$, where $\boldsymbol{x}^{(2)}=t \boldsymbol{x}^{(1)}+\boldsymbol{\varphi}$ and $(A-\lambda I) \boldsymbol{\varphi}=\boldsymbol{x}^{(1)}$. Find the particular solution of the system, where $\boldsymbol{y}(0)=\binom{2}{3}$.
a) $|A-\lambda I|=0$

$$
\left|\begin{array}{cc}
3-\lambda & -4 \\
0 & 3-\lambda
\end{array}\right|=0
$$

$$
\lambda=3 \text { (repeated) }
$$

$$
\begin{aligned}
& \text { b) }(A-3 I) \vec{\varphi}=\vec{x}^{(1)} \\
& \left(\begin{array}{cc}
0 & -4 \\
0 & 0
\end{array}\right)\binom{\varphi_{1}}{\varphi_{2}}=\binom{1}{0} \\
& \varphi_{1}=a ; \varphi_{2}=-\frac{1}{4}
\end{aligned}
$$

$$
\vec{\varphi}=\binom{\varphi_{1}}{\varphi_{2}}=\binom{a}{-1 / 4}
$$

$$
=a\binom{1}{0}+\binom{0}{-1 / 4}
$$

$x_{1}=a ; x_{2}=0$
$\vec{x}=a\binom{1}{0} \Rightarrow \vec{x}^{(1)}=\binom{1}{0}$

$$
\begin{aligned}
\vec{y} & =c_{1}\binom{1}{0} e^{3 t} \\
& +c_{2}\left(t\binom{1}{0}+a\binom{1}{0}+\binom{0}{-1 / 4}\right) e^{3 t} \\
& =\binom{c_{3}+c_{2} t}{-\frac{1}{4} c_{2}} e^{3 t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{y}(0)=\binom{2}{3} & =\binom{c_{3}}{-\frac{1}{4} c_{2}} \\
\Rightarrow c_{2} & =-12 \\
c_{3} & =2
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=3, \quad(A-3 I) \vec{x}=0 \\
& \left(\begin{array}{cc}
0 & -4 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
\end{aligned}
$$

6. (5 pts) Given the nonlinear system:

$$
\frac{d x}{d t}=-(2+y)(x+y)=F \quad \frac{d y}{d t}=-y(1-x)=G
$$

a. ($\mathbf{3} \mathbf{~ p t s}$) Find the 3 steady state solutions (ie. 3 critical points).
b. (2 pts) Find the Jacobian (matrix A) of the system.
a)

$$
\begin{aligned}
& x^{\prime}=y=0 \Rightarrow y=-2 \quad \text { OR } y=-x \\
& y^{\prime}=G=0
\end{aligned}
$$

when $y=-2$
$y^{\prime}=2(1-x)=0$

$$
\begin{array}{r}
y^{\prime}=2(1-x)=0 \\
x=1 \\
(1,-2)
\end{array}
$$

when $y=-x$

$$
\begin{gathered}
y^{\prime}=x(1-x)=0 \\
x=0,1 \\
x=0, \quad y=0,(0,0) \\
x=1, y=-1,(1,-1)
\end{gathered}
$$

b)

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
g_{x} & g_{y} \\
G_{x} & G_{y}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\alpha-y & -x-\alpha-\alpha y \\
y & -1+x
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& g_{x}=-(2+y) \\
& g_{y}=-(x+y)-(2+y) \\
& G_{x}=y \\
& G_{y}=-(1-x)
\end{aligned}
$$

7. Bonus Question (1 pt) Given a system $\boldsymbol{y}^{\prime}=\left(\begin{array}{cc}\alpha+1 & -3 \\ 2 & \alpha+1\end{array}\right) \boldsymbol{y}$. Determine the value (s) of α where the system is neutrally stable.

$$
\begin{aligned}
&|A-\lambda I|=0 \\
&(\alpha+1-\lambda)^{\alpha}+6=0 \\
& \alpha+1-\lambda= \pm \sqrt{6} \grave{I} \\
& \lambda=\alpha+1 \mp \sqrt{6} \grave{I}
\end{aligned}
$$

neutrally stable

$$
\begin{aligned}
\alpha+1 & =0 \\
\alpha & =-1
\end{aligned}
$$

