(3 Multiple Choice Questions) 4.5pts + (3 Questions) 15.5pts + (1 Question) 1 bonus pt

Multiple Choice Questions

- 1. (1.5 pts) Given y = y(x). Which of the following methods can be used to solve $x^2y' + xy = 1/x?$ $\frac{x^{2}y' + xy = 1/x?}{\text{sirst-order ODE}}$ a. Integrating factor b. Separable variables x separable integrating c. Undetermined Coefficients variable factor d. Variation of Parameters $\frac{dy}{dx} = \frac{1}{x^{3}} - \frac{(y)}{x}$ $y' + \frac{1}{x}y = \frac{1}{x^{3}}$ answer: $\frac{dy}{dx} = \frac{1}{x^{3}} - \frac{(y)}{x}$ $\frac{dy}{dx} = e^{\frac{1}{x^{3}} - \frac{(y)}{x}}$ 2. (1.5 pts) Which of the following pairs is linearly dependent?
 - a. $3e^{x}, xe^{x}$ ansight b. $x \sin x, 2x / \csc x$ c. $3xe^{2x}, 2xe^{3x} e^{3x} = e^{2x} e^{x}$ **d.** $x \cos x, \underbrace{x \sec x}_{\cos x} = \frac{x}{\cos x}$

answer: _ b

3. (1.5 pts) Which of the following equations is second order, linear, non-homogeneous ODE? Given y = y(t).

a.
$$y'' + 3y' - \cos y = 0$$

b. $y'' + 3y' + \cos t^2 = 0$
c. $y'' + 3y' = e^{2t}y^{1/2}$
d. $y'' + 3y' - y = 0^{1/2}$

answer: **b**

4. (5pts) Find the particular solution of $(1 + x^2)y' = (2 + y)x$ by any method, where y(0) = 0.

$\frac{dy}{dx} = \frac{(2+y)x}{1+x^2}$	$\Rightarrow \int \frac{\chi}{1+\chi^a} d\chi$
$\int \frac{dy}{a+y} = \int \frac{x}{1+x^{a}} dx$	let $u = 1 + x^{2}$ du = axdx
$\ln a+y = \frac{1}{a}\ln 1+x^{a} + c$	$\frac{1}{2}\int \frac{du}{u}$
$\lambda + y = e^{\ln (1 + \chi^2)^{1/2} + c}$	$=\frac{1}{2}\ln u $
$y = C_{1} 1 + x^{2} ^{1/2} - 2$ $y(0) = 0 \implies C_{1} - 2 = 0$	$c_1 = \lambda$
$y = \lambda \left[\left 1 + \chi^{\lambda} \right ^{\frac{1}{2}} - 1 \right]$	

5. (5.5 pts) Given y = y(x). Find the general solutions of $y'' + 4y = \csc 2x$ by using *variation of parameters*.

solve
$$y_{h}^{"} + 4y_{h} = 0$$

let $y_{h} = e^{rX}$
 $\Rightarrow r^{a} + 4 = 0$
 $r = \pm a \pm \Rightarrow y_{h} = c_{1}cosaX + c_{a}sinaX$
 $y_{1} = cosaX, \quad y_{a} = sinaX, \quad y_{a}' = acosaX$
 $W_{1} = cosaX, \quad y_{a}' = acosaX$
 $W = \begin{vmatrix} y_{1} & y_{a} \\ y_{1}' & y_{a}' \end{vmatrix} = acos^{a}aX + asin^{a}aX = a$
 $W_{1} = \begin{vmatrix} g_{1} & y_{a} \\ g_{2} & y_{a}' \end{vmatrix} = -y_{a}\left(\frac{g_{1}x}{a_{a}}\right) = -sinaX\left(csaX\right) = -1$
 $W_{a} = \begin{vmatrix} y_{1} & 0 \\ y_{1}' & g_{1}xy_{a} \end{vmatrix} = y_{1}\left(\frac{g_{1}x}{a_{a}}\right) = cosaX\left(csaX\right) = \frac{cosaX}{sinaX}$
 $u_{1}' = \frac{W_{1}}{W} = -\frac{1}{2} \Rightarrow u_{1} = -\frac{1}{2}X$
 $u_{2}' = \frac{W_{2}}{W} = \frac{1}{a}\frac{cosaX}{sinaX} \Rightarrow u_{a} = \frac{1}{a}\int \frac{cosaX}{sinaX} dx$ let $v = sinaX$
 $u_{a}' = \frac{U_{1}}{W} = \frac{1}{a}\frac{cosaX}{sinaX} \Rightarrow u_{a} = \frac{1}{a}\int \frac{cosaX}{sinaX} dx$ let $v = sinaX$
 $u_{a}' = \frac{1}{4}\int \frac{dV}{V} = \frac{1}{4}h(1sinaX)$

6. (5 pts) By using *method of undetermined coefficients* or other methods, find the general solution for the 2^{nd} order differential equation $y'' + 3y' + 2y = 4e^{2x} + 5$.

Solve
$$y''_{h} + 3y'_{h} + ay_{h} = 0$$
 let $y_{h} = e^{rx}$
 $\Rightarrow r^{a} + 3r + a = 0 \Rightarrow (r+a)(r+1) = 0 \Rightarrow r = -1, -a$
 $y_{h} = c_{1}e^{-x} + c_{a}e^{-ax}$
 $g(x) = 4e^{ax} + 5$
let $y_{p} = Ae^{ax} + B$
 $y'_{p} = aAe^{ax} \implies y''_{p} + 3y'_{p} + ay_{p} = 4e^{ax} + 5$
 $y''_{p} = 4Ae^{ax}$

 $e^{a\chi}$: $4A + 3(aA) + aA = 4 \implies aA = 4 \implies A = \frac{1}{3}$ constant: $aB = 5 \implies B = \frac{5}{3}$

$$\Rightarrow y = y_{h} + y_{p} = c_{i}e^{-x} + c_{a}e^{-ax} + \frac{1}{3}e^{ax} + \frac{5}{2}$$

Bonus Question (1 pt) Given y'' + 3y' - y = 2, y(0) = 1; y'(0) = 2. Find y'''(0).

(Hint: start with finding y''(0))

$$y''(0) + 3y'(0) - y(0) = 2$$

$$y''(0) = -3$$

$$y''(0) + 3y''(0) - y'(0) = 0$$

$$y'''(0) = y'(0) - 3y''(0)$$

$$= 2 - 3 \cdot (-3)$$

$$= 1|$$