(3 Multiple Choice Questions) 4.5pts + (3 Questions) 15.5pts + (1 Question) 1 bonus pt

Multiple Choice Questions

1. (1.5 pts) Given $y=y(x)$. Which of the following methods can be used to solve
$x^{2} y^{\prime}+x y=1 / x ?$
a. Integrating factor
b. Separable variables X

separable integrating
variable factor
d. Variation of Parameters

$$
\frac{d y}{d x}=\frac{1}{x^{3}}-\frac{y}{x} \quad y^{\prime}+1 / x y=1 / x^{3}
$$

$$
\mu=e^{\int 1 / x d x}
$$

2. ($\mathbf{1 . 5} \mathbf{~ p t s}$) Which of the following pairs is linearly dependent?
a. $3 e^{x}, x e^{x} \quad 2 x \sin x$
b. $x \sin x, 2 x / \csc x$
c. $3 x e^{2 x}, 2 x e^{3 x} e^{3 x}=e^{2 x} \cdot e^{x}$
d. $x \cos x, \underbrace{x \sec x}=\frac{x}{\cos x}$ answer: \qquad
3. (1.5 pts) Which of the following equations is second order, linear, non-homogeneous ODE? Given $y=y(t)$.
a. $y^{\prime \prime}+3 y^{\prime}-\cos y=0$
b. $y^{\prime \prime}+3 y^{\prime}+\cos t^{2}=0$
c. $y^{\prime \prime}+3 y^{\prime}=e^{2 t} y^{x}$
d. $y^{\prime \prime}+3 y^{\prime}-y=0 x$
answer: $\quad b$
4. (5pts) Find the particular solution of $\left(1+x^{2}\right) y^{\prime}=(2+y) x$ by any method, where $y(0)=0$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(2+y) x}{1+x^{2}} \\
& \int \frac{d y}{2+y}=\int \frac{x}{1+x^{2}} d x \\
& \ln |2+y|=\frac{1}{2} \ln \left|1+x^{2}\right|+c \\
& \alpha+y=e^{\ln \left|1+x^{2}\right|^{1 / 2}+c} \\
& \Rightarrow \int \frac{x}{1+x^{2}} d x \\
& \text { let } u=1+x^{\alpha} \\
& d u=2 x d x \\
& \frac{1}{2} \int \frac{d u}{u} \\
& =\frac{1}{2} \ln |u| \\
& y=c_{1}\left|1+x^{2}\right|^{1 / 2}-2 \\
& y(0)=0 \Rightarrow c_{1}-2=0 \Rightarrow c_{1}=2 \\
& y=2\left[\left|1+x^{2}\right|^{1 / 2}-1\right]
\end{aligned}
$$

5. (5.5 pts) Given $y=y(x)$. Find the general solutions of $y^{\prime \prime}+4 y=\csc 2 x$ by using variation of parameters.
solve $y_{n}^{\prime \prime}+4 y_{n}=0$
let $y_{n}=e^{r x}$

$$
\begin{aligned}
& \Rightarrow r^{2}+4=0 \\
& r= \pm 2 i \Rightarrow y_{n}=c_{1} \cos 2 x+c_{2} \sin 2 x \\
& y_{1}=\cos 2 x, \quad y_{2}=\sin 2 x, \\
& y_{1}^{\prime}=-2 \sin 2 x \quad y_{2}^{\prime}=2 \cos 2 x \\
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}{ }^{\prime}
\end{array}\right|=2 \cos ^{2} 2 x+2 \sin ^{2} 2 x=\alpha \\
& W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
\frac{g(x)}{a_{2}} & y_{2}^{\prime}
\end{array}\right|=-y_{2}\left(g(x) / a_{2}\right)=-\sin 2 x(\csc 2 x)=-1 \\
& W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & g(x) / a_{2}
\end{array}\right|=y_{1}\left(\frac{g(x)}{a_{2}}\right)=\cos 2 x(\csc 2 x)=\frac{\cos 2 x}{\sin 2 x} \\
& u_{1}^{\prime}=\frac{w_{1}}{w}=-\frac{1}{2} \Rightarrow u_{1}=-\frac{1}{2} x \\
& u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{1}{2} \frac{\cos 2 x}{\sin 2 x} \Rightarrow u_{2}=\frac{1}{2} \int \frac{\cos 2 x}{\sin 2 x} d x \quad \text { let } v=\sin 2 x \\
& =\frac{1}{4} \int \frac{d v}{v}=\frac{1}{4} \ln |\sin 2 x| \\
& y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x \ln |\sin 2 x|
\end{aligned}
$$

6. (5 pts) By using method of undetermined coefficients or other methods, find the general solution for the $2^{\text {nd }}$ order differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{2 x}+5$.
solve $y_{h}^{\prime \prime}+3 y_{h}^{\prime}+2 y_{h}=0$ let $y_{n}=e^{r x}$

$$
\begin{gathered}
\Rightarrow r^{2}+3 r+2=0 \Rightarrow(r+2)(r+1)=0 \Rightarrow r=-1,-2 \\
y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x} \\
g(x)=4 e^{2 x}+5
\end{gathered}
$$

let $y_{p}=A e^{\alpha x}+B$

$$
\begin{aligned}
& y_{p}^{\prime}=2 A e^{2 x} \Rightarrow y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p}=4 e^{2 x}+5 \\
& y_{p}^{\prime \prime}=4 A e^{2 x} \\
& e^{2 x}: \quad 4 A+3(2 A)+2 A=4 \Rightarrow 12 A=4 \Rightarrow A=\frac{1}{3}
\end{aligned}
$$

constant: $2 B=5 \Rightarrow B=\frac{5}{2}$

$$
\Rightarrow y=y_{n}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}+\frac{1}{3} e^{2 x}+\frac{5}{2}
$$

Bonus Question (1 pt) Given $y^{\prime \prime}+3 y^{\prime}-y=2, y(0)=1 ; y^{\prime}(0)=2$. Find $y^{\prime \prime \prime}(0)$.
(Hint: start with finding $y^{\prime \prime}(0)$)

$$
\begin{aligned}
y^{\prime \prime}(0) & +3 y^{\prime}(0)-y(0)^{1}=2 \\
y^{\prime \prime}(0) & =-3 \\
y^{\prime \prime \prime}(0) & +3 y^{\prime \prime}(0)-y^{\prime}(0)=0 \\
y^{\prime \prime \prime}(0) & =y^{\prime}(0)-3 y^{\prime \prime}(0) \\
& =2-3 \cdot(-3) \\
& =11
\end{aligned}
$$

